2024年七年級數(shù)學(xué)下冊 第8章 整式乘法8.5乘法公式 2完全平方公式說課稿(新版)冀教版_第1頁
2024年七年級數(shù)學(xué)下冊 第8章 整式乘法8.5乘法公式 2完全平方公式說課稿(新版)冀教版_第2頁
2024年七年級數(shù)學(xué)下冊 第8章 整式乘法8.5乘法公式 2完全平方公式說課稿(新版)冀教版_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024年七年級數(shù)學(xué)下冊第8章整式乘法8.5乘法公式2完全平方公式說課稿(新版)冀教版主備人備課成員教學(xué)內(nèi)容分析1.本節(jié)課的主要教學(xué)內(nèi)容:2024年七年級數(shù)學(xué)下冊第8章整式乘法8.5乘法公式中的完全平方公式。

2.教學(xué)內(nèi)容與學(xué)生已有知識的聯(lián)系:本節(jié)課將引導(dǎo)學(xué)生復(fù)習(xí)整式乘法的基礎(chǔ)知識,并在此基礎(chǔ)上學(xué)習(xí)完全平方公式。這與學(xué)生之前學(xué)過的整式乘法、乘法分配律等內(nèi)容緊密相連,有助于學(xué)生更好地理解和掌握完全平方公式。核心素養(yǎng)目標(biāo)本節(jié)課旨在培養(yǎng)學(xué)生的數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模能力。通過學(xué)習(xí)完全平方公式,學(xué)生能夠抽象出乘法運算的規(guī)律,發(fā)展邏輯推理思維,并在解決實際問題中運用數(shù)學(xué)建模,將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,提高解決實際問題的能力。同時,通過合作探究和自主發(fā)現(xiàn),培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。學(xué)習(xí)者分析1.學(xué)生已經(jīng)掌握的相關(guān)知識:學(xué)生在進入本節(jié)課之前,已經(jīng)學(xué)習(xí)了整式乘法的基本概念和運算規(guī)則,包括單項式與單項式相乘、多項式與多項式相乘等。此外,學(xué)生對乘法分配律也有一定的了解。

2.學(xué)生的學(xué)習(xí)興趣、能力和學(xué)習(xí)風(fēng)格:七年級學(xué)生對數(shù)學(xué)學(xué)習(xí)充滿好奇心,對探索數(shù)學(xué)規(guī)律和解決實際問題有較高的興趣。他們的數(shù)學(xué)能力正在逐步提升,能夠進行基本的邏輯推理和抽象思維。學(xué)習(xí)風(fēng)格上,部分學(xué)生傾向于通過直觀演示和動手操作來理解新知識,而另一部分學(xué)生則更喜歡通過邏輯推理和公式推導(dǎo)來學(xué)習(xí)。

3.學(xué)生可能遇到的困難和挑戰(zhàn):學(xué)生在學(xué)習(xí)完全平方公式時,可能會遇到以下困難:一是理解公式推導(dǎo)過程中的邏輯關(guān)系,二是將公式應(yīng)用于解決實際問題時的靈活運用。此外,部分學(xué)生可能對公式的記憶存在困難,需要通過反復(fù)練習(xí)來加強記憶。因此,教學(xué)中需要注重公式的推導(dǎo)過程,提供足夠的練習(xí)機會,并通過實例分析幫助學(xué)生理解公式的實際應(yīng)用。學(xué)具準(zhǔn)備多媒體課型新授課教法學(xué)法講授法課時第一課時步驟師生互動設(shè)計二次備課教學(xué)資源-軟件資源:數(shù)學(xué)教學(xué)軟件、在線教育平臺(如國家中小學(xué)網(wǎng)絡(luò)云平臺)、幾何畫板軟件

-課程平臺:冀教版七年級數(shù)學(xué)下冊教材配套電子資源庫

-信息化資源:多媒體課件、教學(xué)視頻、數(shù)學(xué)游戲等互動資源

-教學(xué)手段:實物教具(如正方形、長方形紙片)、黑板、粉筆、教學(xué)模型(如正方體、長方體)教學(xué)過程一、導(dǎo)入新課

1.老師提問:同學(xué)們,我們已經(jīng)學(xué)習(xí)了整式乘法的相關(guān)知識,誰能告訴我什么是整式乘法?請舉例說明。

2.學(xué)生回答后,老師總結(jié):整式乘法是指將一個單項式與一個多項式相乘,或者將兩個多項式相乘的運算。

3.老師提出本節(jié)課的學(xué)習(xí)目標(biāo):今天我們要學(xué)習(xí)的是整式乘法中的一個重要公式——完全平方公式,希望大家通過學(xué)習(xí),能夠掌握公式的推導(dǎo)過程,并能夠靈活運用公式解決實際問題。

二、新課講授

1.公式的推導(dǎo)

(1)老師展示一個具體的例子:求(a+b)^2的值。

(2)引導(dǎo)學(xué)生回顧整式乘法的法則,嘗試將(a+b)^2展開。

(3)學(xué)生動手計算,老師巡視指導(dǎo)。

(4)學(xué)生展示計算過程,老師點評并總結(jié):將(a+b)^2展開,可以得到a^2+2ab+b^2。

(5)引導(dǎo)學(xué)生觀察展開后的式子,發(fā)現(xiàn)其中包含了完全平方公式。

(6)老師講解完全平方公式的推導(dǎo)過程,引導(dǎo)學(xué)生理解公式中的每一項的含義。

2.公式的應(yīng)用

(1)老師提出問題:如何利用完全平方公式計算(3x-2)^2的值?

(2)學(xué)生獨立完成計算,老師巡視指導(dǎo)。

(3)學(xué)生展示計算過程,老師點評并總結(jié):將(3x-2)^2展開,可以得到9x^2-12x+4。

(4)老師提出新的問題:如何利用完全平方公式解決實際問題?

(5)學(xué)生分組討論,老師巡視指導(dǎo)。

(6)各小組匯報討論結(jié)果,老師點評并總結(jié):

-完全平方公式可以應(yīng)用于計算平方差;

-完全平方公式可以應(yīng)用于計算完全平方數(shù);

-完全平方公式可以應(yīng)用于解決實際問題,如工程問題、幾何問題等。

三、鞏固練習(xí)

1.老師出示幾道練習(xí)題,讓學(xué)生獨立完成。

(1)計算下列各式的值:

-(a+3)^2

-(2x-5)^2

-(x+2y)^2

(2)利用完全平方公式計算下列各式的值:

-(a+2b)^2

-(3x-4)^2

-(2y+3z)^2

2.學(xué)生完成練習(xí),老師巡視指導(dǎo)。

3.學(xué)生展示解題過程,老師點評并總結(jié)。

四、課堂小結(jié)

1.老師引導(dǎo)學(xué)生回顧本節(jié)課所學(xué)內(nèi)容,強調(diào)完全平方公式的推導(dǎo)過程和應(yīng)用方法。

2.學(xué)生總結(jié):完全平方公式是一個重要的數(shù)學(xué)工具,可以應(yīng)用于計算平方差、完全平方數(shù)和解決實際問題。

3.老師布置課后作業(yè),讓學(xué)生鞏固所學(xué)知識。

五、拓展延伸

1.老師提出問題:如何利用完全平方公式推導(dǎo)出平方差公式?

2.學(xué)生分組討論,老師巡視指導(dǎo)。

3.各小組匯報討論結(jié)果,老師點評并總結(jié):將完全平方公式中的a和b互換,可以得到平方差公式。

4.老師總結(jié):本節(jié)課我們學(xué)習(xí)了完全平方公式,掌握了公式的推導(dǎo)過程和應(yīng)用方法。希望同學(xué)們在今后的學(xué)習(xí)中,能夠靈活運用所學(xué)知識,解決實際問題。拓展與延伸六、拓展與延伸

1.提供與本節(jié)課內(nèi)容相關(guān)的拓展閱讀材料:

-《數(shù)學(xué)之美》:介紹數(shù)學(xué)在生活中的應(yīng)用,如建筑、工程、物理等領(lǐng)域,特別是完全平方公式在幾何學(xué)中的應(yīng)用。

-《數(shù)學(xué)的故事》:通過歷史故事介紹數(shù)學(xué)家的發(fā)現(xiàn),如畢達(dá)哥拉斯定理與完全平方公式的關(guān)系。

-《代數(shù)學(xué)史》:探討代數(shù)學(xué)的發(fā)展歷程,包括完全平方公式的演變和它在數(shù)學(xué)史上的地位。

2.鼓勵學(xué)生進行課后自主學(xué)習(xí)和探究:

-探究完全平方公式在代數(shù)方程中的應(yīng)用,如解一元二次方程。

-研究完全平方公式在幾何學(xué)中的具體應(yīng)用,例如如何通過完全平方公式來計算矩形的面積。

-分析完全平方公式在其他數(shù)學(xué)領(lǐng)域中的延伸,如多項式展開、多項式除法等。

-完成以下探究任務(wù):

a.設(shè)計一個實驗或游戲,讓學(xué)生通過實際操作來理解完全平方公式。

b.編寫一個故事或案例,展示完全平方公式在實際生活中的應(yīng)用。

c.搜集生活中的例子,展示完全平方公式在解決問題中的作用。

-學(xué)生可以分組合作,每組選擇一個探究主題,共同完成探究報告,并在下一節(jié)課上進行分享和討論。

3.課后作業(yè):

-完成以下練習(xí)題,加深對完全平方公式理解:

a.計算(a+b+c)^2的值,并觀察結(jié)果。

b.利用完全平方公式證明(a-b)^2+4ab=a^2。

c.通過完全平方公式解決以下問題:一個長方形的周長是30厘米,長和寬之差是2厘米,求長方形的面積。

4.建議學(xué)生閱讀以下資料:

-《代數(shù)基礎(chǔ)》:深入探討代數(shù)的基本概念,包括完全平方公式在代數(shù)中的基礎(chǔ)作用。

-《幾何基礎(chǔ)》:了解幾何學(xué)中如何運用完全平方公式,如計算圖形的面積和體積。內(nèi)容邏輯關(guān)系①本文重點知識點:

a.完全平方公式:a^2+2ab+b^2=(a+b)^2

b.完全平方公式展開:將(a+b)^2展開得到a^2+2ab+b^2

c.完全平方公式應(yīng)用:在計算平方差、完全平方數(shù)和解決實際問題中的應(yīng)用

②本文重點詞:

a.完全平方:指一個數(shù)的平方加上或減去兩個數(shù)的乘積的兩倍

b.展開式:將

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論