益陽醫(yī)學(xué)高等??茖W(xué)?!稒C器視覺技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
益陽醫(yī)學(xué)高等專科學(xué)?!稒C器視覺技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
益陽醫(yī)學(xué)高等專科學(xué)?!稒C器視覺技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
益陽醫(yī)學(xué)高等專科學(xué)校《機器視覺技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
益陽醫(yī)學(xué)高等??茖W(xué)?!稒C器視覺技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁益陽醫(yī)學(xué)高等??茖W(xué)校《機器視覺技術(shù)》

2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺中的圖像分割任務(wù)旨在將圖像分割成不同的區(qū)域。假設(shè)要對一張風(fēng)景圖片進行分割,區(qū)分天空、陸地和水面。以下關(guān)于圖像分割方法的描述,哪一項是錯誤的?()A.基于閾值的分割方法簡單快速,但對于復(fù)雜圖像效果不佳B.區(qū)域生長法從種子點開始,逐步合并相似的區(qū)域C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)在圖像分割中表現(xiàn)出色,能夠生成精確的分割結(jié)果D.圖像分割的結(jié)果總是清晰明確,不存在模糊或錯誤的邊界2、在計算機視覺的圖像特征提取中,假設(shè)要提取對光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計算復(fù)雜度高,實時性差B.HOG特征對光照變化適應(yīng)性強,但對旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達能力有限D(zhuǎn).沒有一種特征提取方法能夠同時滿足對光照、旋轉(zhuǎn)和縮放的不變性要求3、在計算機視覺的目標(biāo)跟蹤任務(wù)中,需要持續(xù)跟蹤一個或多個運動目標(biāo)。假設(shè)要跟蹤一個在操場上跑步的人。以下關(guān)于目標(biāo)跟蹤算法的描述,哪一項是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標(biāo)的相似特征來實現(xiàn)跟蹤B.深度學(xué)習(xí)中的相關(guān)濾波算法能夠快速準(zhǔn)確地跟蹤目標(biāo),適應(yīng)目標(biāo)的外觀變化C.目標(biāo)跟蹤算法能夠在目標(biāo)被遮擋或短暫消失后,仍然準(zhǔn)確地恢復(fù)跟蹤D.無論目標(biāo)的運動速度和軌跡如何復(fù)雜,目標(biāo)跟蹤算法都能完美地跟蹤4、假設(shè)要開發(fā)一個能夠自動識別水果種類和品質(zhì)的計算機視覺系統(tǒng),用于水果分揀和質(zhì)量評估。在獲取水果圖像時,可能會受到光照、角度和遮擋等因素的影響。為了提高識別的準(zhǔn)確性和魯棒性,以下哪種圖像預(yù)處理技術(shù)可能是關(guān)鍵?()A.圖像增強B.圖像去噪C.圖像歸一化D.圖像分割5、計算機視覺中的行人重識別是指在不同攝像頭拍攝的圖像中識別出同一個行人。假設(shè)要在一個大型商場的監(jiān)控系統(tǒng)中實現(xiàn)行人重識別,以下關(guān)于行人重識別方法的描述,正確的是:()A.基于顏色和紋理特征的方法對行人的姿態(tài)和光照變化不敏感,識別準(zhǔn)確率高B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法能夠?qū)W習(xí)到行人的判別性特征,但容易受到背景干擾C.行人重識別系統(tǒng)只需要關(guān)注行人的外觀特征,不需要考慮行人的行為特征D.行人重識別在不同場景和攝像頭視角下的性能始終保持穩(wěn)定,不受影響6、計算機視覺在無人駕駛飛行器(UAV)中的應(yīng)用可以輔助飛行和導(dǎo)航。假設(shè)一架UAV需要依靠視覺信息避開障礙物,以下關(guān)于UAV計算機視覺應(yīng)用的描述,正確的是:()A.僅依靠單目視覺就能準(zhǔn)確估計障礙物的距離和速度B.視覺信息在UAV飛行中的作用有限,主要依靠其他傳感器如GPSC.多目視覺和深度學(xué)習(xí)算法的結(jié)合可以為UAV提供更準(zhǔn)確的環(huán)境感知和障礙物避讓能力D.UAV的飛行速度和姿態(tài)對視覺系統(tǒng)的性能沒有影響7、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設(shè)我們要分析一個視頻中物體的運動速度和方向,以下哪種光流估計算法在復(fù)雜場景下能夠提供更準(zhǔn)確的結(jié)果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法8、計算機視覺中的動作識別用于分析視頻中的人體動作。假設(shè)要識別一段舞蹈視頻中的動作類別。以下關(guān)于動作識別方法的描述,哪一項是不準(zhǔn)確的?()A.可以基于時空特征提取的方法,捕捉動作在時間和空間上的變化B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長短時記憶網(wǎng)絡(luò)(LSTM)適用于動作序列的分析C.動作識別只需要關(guān)注人體的關(guān)節(jié)位置,不需要考慮人體的整體形態(tài)D.多模態(tài)數(shù)據(jù)融合,如結(jié)合音頻和視頻信息,可以提高動作識別的準(zhǔn)確率9、在計算機視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的上采樣方法?()A.反卷積B.亞像素卷積C.最近鄰插值D.以上都是10、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率和細節(jié)。假設(shè)要將一張低分辨率的老照片重建為高分辨率的清晰圖像,同時要保持圖像的自然度和真實性。以下哪種圖像超分辨率重建方法最為適合?()A.基于插值的方法B.基于重建的方法C.基于深度學(xué)習(xí)的方法D.基于學(xué)習(xí)字典的方法11、在計算機視覺的圖像配準(zhǔn)任務(wù)中,需要將不同視角或時間拍攝的圖像進行對齊。假設(shè)要將兩張具有一定旋轉(zhuǎn)和平移差異的圖像進行配準(zhǔn),以下關(guān)于圖像配準(zhǔn)方法的描述,正確的是:()A.基于特征點匹配的圖像配準(zhǔn)方法對圖像的變形和光照變化不敏感B.直接使用像素值的相似性度量就能實現(xiàn)準(zhǔn)確的圖像配準(zhǔn)C.圖像配準(zhǔn)不需要考慮圖像的分辨率和比例尺差異D.深度學(xué)習(xí)在圖像配準(zhǔn)中的應(yīng)用還不成熟,不如傳統(tǒng)方法有效12、計算機視覺中的手勢識別用于理解人的手勢動作。假設(shè)要在一個智能交互系統(tǒng)中實現(xiàn)實時準(zhǔn)確的手勢識別,以下關(guān)于手勢識別方法的描述,正確的是:()A.基于傳感器的手勢識別方法能夠精確獲取手勢的運動信息,但佩戴傳感器不方便B.基于視覺的手勢識別方法不受環(huán)境光照和背景的影響,識別穩(wěn)定性高C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在手勢識別中無法處理復(fù)雜的手勢變化和遮擋D.手勢識別系統(tǒng)只要能夠識別常見的幾種手勢,就能夠滿足大多數(shù)應(yīng)用需求13、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時保持可接受的視覺質(zhì)量。假設(shè)我們需要在網(wǎng)絡(luò)上傳輸大量的圖像,以下哪種圖像壓縮標(biāo)準(zhǔn)能夠在保證較高壓縮比的同時,提供較好的圖像質(zhì)量?()A.JPEGB.PNGC.GIFD.BMP14、計算機視覺中的人臉識別技術(shù)應(yīng)用廣泛。假設(shè)要在一個門禁系統(tǒng)中實現(xiàn)準(zhǔn)確的人臉識別,以下關(guān)于人臉識別方法的描述,正確的是:()A.基于幾何特征的人臉識別方法對姿態(tài)和光照變化具有很強的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數(shù)據(jù)庫,并且識別速度快C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在人臉識別中能夠?qū)W習(xí)到更具判別性的特征,但容易受到數(shù)據(jù)偏差的影響D.人臉識別系統(tǒng)一旦訓(xùn)練完成,就不需要更新和優(yōu)化,能夠一直保持高準(zhǔn)確率15、計算機視覺中的圖像語義分割需要為圖像中的每個像素分配類別標(biāo)簽。假設(shè)要對一張城市街景圖像進行語義分割,包括道路、建筑物、車輛和行人等。以下哪種圖像語義分割方法在處理這種復(fù)雜場景時能夠提供更精細的分割結(jié)果?()A.全卷積網(wǎng)絡(luò)(FCN)B.U-NetC.SegNetD.DeepLab16、在一個基于計算機視覺的農(nóng)業(yè)監(jiān)測系統(tǒng)中,需要對農(nóng)作物的生長狀況進行評估,例如判斷葉片的顏色、形狀和病蟲害情況。以下哪種圖像分析方法可能對農(nóng)作物監(jiān)測較為有效?()A.顏色空間轉(zhuǎn)換B.形態(tài)學(xué)分析C.紋理分析D.以上都是17、計算機視覺在體育賽事分析中的應(yīng)用可以提供更深入的比賽洞察。假設(shè)要分析一場足球比賽中球員的跑位和傳球模式,以下關(guān)于體育賽事計算機視覺應(yīng)用的描述,正確的是:()A.僅依靠球員的位置信息就能全面分析比賽中的戰(zhàn)術(shù)和策略B.球員的速度和加速度等動態(tài)信息對比賽分析的價值不大C.結(jié)合深度學(xué)習(xí)和軌跡分析技術(shù)可以更有效地挖掘比賽中的關(guān)鍵模式和趨勢D.比賽場地的光照和攝像機視角對計算機視覺分析的結(jié)果沒有影響18、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設(shè)要對一段視頻中的物體運動進行分析,以下關(guān)于光流估計的描述,正確的是:()A.稀疏光流估計只計算圖像中部分特征點的運動,無法反映整體的運動趨勢B.稠密光流估計能夠得到圖像中每個像素的運動向量,但計算復(fù)雜度較高C.光流估計的結(jié)果不受光照變化和噪聲的影響,具有很高的準(zhǔn)確性D.光流估計只能用于分析勻速直線運動的物體,對于復(fù)雜的運動模式無法處理19、計算機視覺在工業(yè)檢測中的應(yīng)用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下關(guān)于圖像采集設(shè)備的選擇,哪一項是最為關(guān)鍵的?()A.選擇高分辨率的數(shù)碼相機,獲取清晰的圖像B.選用具有大景深的鏡頭,確保整個電路板都清晰成像C.采用高速攝像機,快速采集大量圖像D.選擇價格低廉的圖像采集設(shè)備,降低成本20、對于圖像的邊緣檢測任務(wù),假設(shè)要準(zhǔn)確檢測出圖像中物體的邊緣,同時抑制噪聲的影響。以下哪種邊緣檢測算子可能表現(xiàn)更好?()A.Sobel算子B.Roberts算子C.Prewitt算子D.隨機生成邊緣檢測結(jié)果21、計算機視覺中的動作識別是對視頻中的人體動作進行分類和理解。假設(shè)我們要分析一段體育比賽的視頻,識別其中運動員的各種動作,以下哪種方法能夠有效地捕捉動作的時空特征?()A.基于手工特征和分類器的方法B.基于深度學(xué)習(xí)的時空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法22、在計算機視覺的圖像生成任務(wù)中,假設(shè)要生成具有真實感的自然圖像。以下關(guān)于圖像生成方法的描述,正確的是:()A.生成對抗網(wǎng)絡(luò)(GAN)能夠生成逼真的圖像,但訓(xùn)練過程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質(zhì)量的圖像D.所有的圖像生成方法都能夠生成與真實世界完全一致的圖像23、在計算機視覺的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要對一張受到嚴重噪聲污染的圖像進行去噪處理,以下關(guān)于圖像去噪方法的描述,正確的是:()A.均值濾波方法能夠在去除噪聲的同時很好地保留圖像的細節(jié)B.中值濾波對椒鹽噪聲的去除效果不佳C.基于深度學(xué)習(xí)的圖像去噪方法可以自適應(yīng)地學(xué)習(xí)噪聲模式和圖像特征D.圖像去噪不會引入任何新的失真或模糊24、在計算機視覺的圖像融合任務(wù)中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設(shè)要將一張白天拍攝的風(fēng)景圖像和一張夜晚拍攝的同一地點的圖像進行融合,以下關(guān)于圖像融合方法的描述,哪一項是不正確的?()A.可以基于像素級的融合策略,將兩幅圖像的像素值進行加權(quán)或組合B.特征級融合方法先提取圖像的特征,然后進行融合,能夠更好地保留圖像的語義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質(zhì)量和內(nèi)容無關(guān)D.多模態(tài)圖像融合需要考慮不同圖像的特點和互補性,以獲得更理想的融合結(jié)果25、計算機視覺中的圖像修復(fù)是填補圖像中的缺失或損壞部分。假設(shè)我們有一張老照片,其中部分區(qū)域被損壞,需要進行修復(fù)。以下哪種圖像修復(fù)方法能夠生成自然、合理的內(nèi)容,與周圍區(qū)域融合良好?()A.基于紋理合成的修復(fù)方法B.基于插值和填充的修復(fù)方法C.基于深度學(xué)習(xí)的圖像修復(fù)網(wǎng)絡(luò),如ContextEncoderD.基于圖像分解和重構(gòu)的修復(fù)方法二、簡答題(本大題共4個小題,共20分)1、(本題5分)計算機視覺中如何進行社區(qū)服務(wù)中的人員識別和行為分析?2、(本題5分)簡述計算機視覺在水利工程中的應(yīng)用。3、(本題5分)簡述圖像的多尺度分析方法。4、(本題5分)解釋計算機視覺在音樂演出中的舞臺效果增強。三、分析題(本大題共5個小題,共25分)1、(本題5分)觀察某城市公園的導(dǎo)視系統(tǒng)和休息設(shè)施設(shè)計,思考如何通過人性化的設(shè)計和與環(huán)境融合的視覺元素提升游客的體驗。2、(本題5分)解讀某體育賽事的官方攝影作品設(shè)計,分析其如何通過視覺效果展示賽事精彩瞬間和運動員風(fēng)采。3、(本題5分)分析某文具品牌的新品發(fā)布會舞臺背景設(shè)計

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論