




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
最值模型之胡不歸與阿氏圓模型
模型一胡不歸模型
知徐機(jī)理
【模型來源】
從前有個(gè)少年外出求學(xué),某天不幸得知老父親病危的消息,便立即趕路回家.根據(jù)“兩點(diǎn)之間線段最短”,
雖然從他此刻位置A到家B之間是一片砂石地,但他義無反顧踏上歸途,當(dāng)趕到家時(shí),老人剛咽了氣,小伙子
追悔莫及失聲痛哭.鄰居告訴小伙子說,老人彌留之際不斷念叨著“胡不歸?胡不歸?”
看到這里很多人都會(huì)有一個(gè)疑問,少年究竟能不能提前到家呢?假設(shè)可以提早到家,那么他該選擇怎樣的一
條路線呢?這就是今天要講的“胡不歸”問題.
【模型建立】
如圖1,一動(dòng)點(diǎn)P在直線7WN外的運(yùn)動(dòng)速度為弘,在直線AW上運(yùn)動(dòng)的速度為%,且弘V%,A、B為定點(diǎn),點(diǎn)C
在直線上,確定點(diǎn)。的位置使平+等的值最小.(注意與阿氏圓模型的區(qū)分)
CHkAC
圖2圖3
記k=粵,即求BC+ALAC的最小值.
卜2
⑵如圖2,構(gòu)造射線AD使得sin/D4N=R,CH=kAC,將問題轉(zhuǎn)化為求BC+CH最小值.
⑶如圖3,過B點(diǎn)作BH_LAD交MN于點(diǎn)、。,交AD于H點(diǎn),此時(shí)BC+CH取到最小值,即BC+比4。最
小.
例題解析
【題型1】胡不歸模型?已有相關(guān)角直接作垂線
的]如圖,在矩形ABCD中,對(duì)角線AC,交于點(diǎn)O,AB=03=3,點(diǎn)在線段上,且4M=2.點(diǎn)
P為線段05上的一個(gè)動(dòng)點(diǎn),則MP+yPB的最小值為.?M
AD
血]2如圖,在矩形ABC。中,48=4,AD=8,點(diǎn)分別在邊AD,BC上,且AE=3,沿直線EF翻折,點(diǎn)
A的對(duì)應(yīng)點(diǎn)4恰好落在對(duì)角線AC上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B',點(diǎn)/■為線段AA'上一動(dòng)點(diǎn),則EM+與NM
5
的最小值為.
【題型2】胡不歸模型.構(gòu)造相關(guān)角再作垂線
題1如圖,在平面直角坐標(biāo)系中,二次函數(shù)"=/2+3/-4的圖象與立軸交于4、。兩點(diǎn),與夕軸交于點(diǎn)B,若
P是2軸上一動(dòng)點(diǎn),點(diǎn)Q(0,2)在沙軸上,連接PQ,則PQ+孚PC的最小值是.
題2如圖,在長(zhǎng)方形ABCD中,AB=2,AO=2通,點(diǎn)E在反7上,連接DE,在點(diǎn)E的運(yùn)動(dòng)過程中,BE+
V2DE的最小值為.
變式劑株
[題目①如圖,在菱形ABCD中,/ABC=60°,AD=6,對(duì)角線AC、BD相交于點(diǎn)。,點(diǎn)E在線段AC上,且
AE=2,點(diǎn)F為線段BD上的一個(gè)動(dòng)點(diǎn),則EF+的最小值為.
?M
AD
題目。如圖,。。是等邊三角形ABC的外接圓,其半徑為4.過點(diǎn)B作于點(diǎn)E,點(diǎn)P為線段BE
上一動(dòng)點(diǎn)(點(diǎn)P不與B,E重合),則CP+-j-BP的最小值為.
癲目§如圖,在出△ABC中,/ACB=90°,4LBC=30°,AC=4,按下列步驟作圖:①在AC和AB上分別
截取AD.AE,使AD=AE.②分別以點(diǎn)D和點(diǎn)E為圓心,以大于^DE的長(zhǎng)為半徑作弧,兩弧在ABAC
內(nèi)交于點(diǎn)W③作射線W交BC于點(diǎn)F.若點(diǎn)P是線段AF上的一個(gè)動(dòng)點(diǎn),連接CF,則CP+卷”的
最小值是.
題目可如圖,在菱形ABCD中,乙4BC=60°,人。=6,對(duì)角線力。、相交于點(diǎn)。,點(diǎn)E在線段AC上,且
AE=2,點(diǎn)F為線段上的一個(gè)動(dòng)點(diǎn),則EF+^-BF的最小值為.
題目可如圖,AACB=90°,=2,=4,點(diǎn)P為AB上一點(diǎn),連接PC,則PC+^PB的最小值為
A
題目⑤如圖,在bABC中,乙4=15°,AB=10,P為力。邊上的一個(gè)動(dòng)點(diǎn)(不與力、。重合),連接BP,則
孚AP+PB的最小值是()
A.5V2B.5V3C.D.8
O
題目可如圖,在RtAABC中,NACB=90°,AC=4,BC=3,點(diǎn)。是斜邊AB上的動(dòng)點(diǎn),則CD+與AD
的最小值為.
、題目刊如圖,在矩形ABCD中,AB=1,BC=V^,點(diǎn)”是對(duì)角線47上的動(dòng)點(diǎn),連接ZW,則。河+右4”
模型二阿氏圓模型
和擁僦理
【模型來源】
所謂阿氏圓,就是動(dòng)點(diǎn)到兩定點(diǎn)距離之比為定值,那么動(dòng)點(diǎn)的軌跡就是圓,這個(gè)圓,稱為阿波羅尼斯圓,簡(jiǎn)
稱為阿氏圓.其本質(zhì)就是通過構(gòu)造母子相似,化去比例系數(shù),轉(zhuǎn)化為兩定一動(dòng)將軍飲馬型求最值,難點(diǎn)在于如
何構(gòu)造母子相似.
p
【模型建立】
如圖1所示,OO的半徑為T,點(diǎn)A、B都在。。外,P為。。上一動(dòng)點(diǎn),已知r=A>OB,連接PA、PB,則當(dāng)
“PA+MP3”的值最小時(shí),P點(diǎn)、的位置如何確定?
【解題方法】
如圖2,在線段OB上截取OC使OC=上度,則可說明4BPO與APCO相似,即k-PB=PC。
故本題求“P4+bPB”的最小值可以轉(zhuǎn)化為“P4+PC”的最小值,
其中與A與。為定點(diǎn),P為動(dòng)點(diǎn),故當(dāng)A、P、。三點(diǎn)共線時(shí),“PA+PC”值最小,如圖3所示。
例題斛新
【題型1】?jī)啥c(diǎn)在圓外:向內(nèi)取點(diǎn)(系數(shù)小于1)
網(wǎng)]1如圖,在放A4B。中,乙4CB=90°,CB=4,CA=6,圓。的半徑為2,點(diǎn)P為圓上一動(dòng)點(diǎn),連接AP,
BP.求①AP+三BP;②2Ap+BP;③^-AP+BP;?AP+3BP的最小值.
???
【題型2】?jī)啥c(diǎn)在圓內(nèi):向外取點(diǎn)(系數(shù)大于1)
畫]如圖,在。。中,點(diǎn)4、點(diǎn)8在G)。上,ZAOB=90°,OA=6,點(diǎn)。在。4上,且OC=2AC,點(diǎn)。是OB
的中點(diǎn),點(diǎn)河是劣弧48上的動(dòng)點(diǎn),則CM+2ZW的最小值為.
【題型3】?jī)啥c(diǎn)一個(gè)在圓內(nèi),一個(gè)在圓外(提系數(shù))
血]1如圖,在AABC中,/ABC=90°,AB=2BC=6,RD=1,P在以B為圓心3為半徑的圓上,則AP+
6PD的最小值為.
【題型4】隱圓型阿氏圓
的1如圖,在菱形ABCD中,對(duì)角線AC、相交于點(diǎn)。,點(diǎn)E、F分別是QD、。。上的兩個(gè)動(dòng)點(diǎn),且EF=
4,P是HF的中點(diǎn),連接OP、PC、PD,若AC=12,BD=16,則PC+:PD的最小值為.
?M
D
變式利揀
題目UJ如圖,在中,/ACB=90°,。8=7,力。=9,以。為圓心、3為半徑作0。,9為0。上一
動(dòng)點(diǎn),連接4P、BP,則與4P+BP的最小值為()
O
B.5V2c.4+VioD.2V13
題目也如圖,正方形的邊長(zhǎng)AB=8,E為平面內(nèi)一動(dòng)點(diǎn),且AE=4,F為CD上一點(diǎn),CF=2,連接
則EF+g即的最小值為()
A.6V2B.4D.6
題目叵如圖,已知正方形4BCD的邊長(zhǎng)為4,的半徑為2,點(diǎn)P是。B上的一個(gè)動(dòng)點(diǎn),則PD—如。的
最大值為
7
D
[題目目如圖,菱形ABCD的邊長(zhǎng)為2,銳角大小為60°,。A與5。相切于點(diǎn)E,在。A上任取一點(diǎn)P,則
題目回如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E為邊AO上一個(gè)動(dòng)點(diǎn),點(diǎn)F在邊CD上,且線段EF=4,點(diǎn)G
為線段EF的中點(diǎn),連接BG、CG,則BG+gcG的最小值為.
、題目0如圖,在電AABC中,乙4cB=90°,47=6,BC=8,。、E分別是邊BC、AC上的兩個(gè)動(dòng)點(diǎn),且
?!?4,。是。石的中點(diǎn),連接PA,PB,則P4+j-PB的最小值為.
B
題目⑶如圖,在邊長(zhǎng)為6的正方形ABCD中,加■為AB上一點(diǎn),且BM=2,N為邊BC上一動(dòng)點(diǎn).連接
MN,將4BMN沿翻折得到"MN,點(diǎn)P與點(diǎn)B對(duì)應(yīng),連接PA,PC,貝|PA+2PC的最小值為
???
???
最值模型之胡不歸與阿氏圓模型
模型一胡不歸模型
知徐機(jī)理
【模型來源】
從前有個(gè)少年外出求學(xué),某天不幸得知老父親病危的消息,便立即趕路回家.根據(jù)“兩點(diǎn)之間線段最短”,
雖然從他此刻位置A到家B之間是一片砂石地,但他義無反顧踏上歸途,當(dāng)趕到家時(shí),老人剛咽了氣,小伙子
追悔莫及失聲痛哭.鄰居告訴小伙子說,老人彌留之際不斷念叨著“胡不歸?胡不歸?”
看到這里很多人都會(huì)有一個(gè)疑問,少年究竟能不能提前到家呢?假設(shè)可以提早到家,那么他該選擇怎樣的一
條路線呢?這就是今天要講的“胡不歸”問題.
【模型建立】
如圖1,一動(dòng)點(diǎn)P在直線7WN外的運(yùn)動(dòng)速度為弘,在直線AW上運(yùn)動(dòng)的速度為%,且弘V%,A、B為定點(diǎn),點(diǎn)C
在直線上,確定點(diǎn)。的位置使平+等的值最小.(注意與阿氏圓模型的區(qū)分)
CHkAC
圖2圖3
記k=粵,即求BC+ALAC的最小值.
卜2
⑵如圖2,構(gòu)造射線AD使得sin/D4N=R,CH=kAC,將問題轉(zhuǎn)化為求BC+CH最小值.
⑶如圖3,過B點(diǎn)作BH_LAD交MN于點(diǎn)、。,交AD于H點(diǎn),此時(shí)BC+CH取到最小值,即BC+比4。最
小.
例題解析
【題型1】胡不歸模型?已有相關(guān)角直接作垂線
的]如圖,在矩形ABCD中,對(duì)角線AC,交于點(diǎn)O,AB=03=3,點(diǎn)在線段上,且4M=2.點(diǎn)
P為線段05上的一個(gè)動(dòng)點(diǎn),則MP+yPB的最小值為.?M
AD
【分析】過點(diǎn)P作PE_L8。于點(diǎn)E,過點(diǎn)“作詼_L3。于點(diǎn)F,證明TWP++PE>MF,進(jìn)
一求解MR即可得到答案.
【詳解】解:;四邊形ABCD是矩形,,OA=OB^OC^OD,NABC=90°,
?.?AB^OB,:.AB^OB^OA,:./\OAB是等邊三角形,,AABO=60°,
4OBC=AABC-AABO=90°-60°=30°□
過點(diǎn)P作PE_LBC于點(diǎn)、E,過點(diǎn)“作BC于點(diǎn)F,
在用ABFE中,由⑴知:4PBE=30。,;.PE=±PB,;.MP+^PB=MP+PE>MF,
在矩形ABCD中,4。=2OA=2OB=6,VAM=2,CM=AC-AM=6-2=4,
在①△CMF中,/MCF=/OBC=30°,.?.MF=^CM=2,+的最小值為2,故答案為:2.
吼2如圖,在矩形ABCD中,4B=4,AD=8,點(diǎn)分別在邊4D,BC上,且AE=3,沿直線EF翻折,點(diǎn)
A的對(duì)應(yīng)點(diǎn)4恰好落在對(duì)角線AC上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B',點(diǎn)M為線段AA上一動(dòng)點(diǎn),則EM+李
5
的最小值為.
【分析】過點(diǎn)刊作MN,HE于點(diǎn)N,作點(diǎn)E關(guān)于的對(duì)稱點(diǎn)G,連接7WG.由勾股定理求出4D的長(zhǎng),
根據(jù)銳角三角函數(shù)的知識(shí)可得MN=項(xiàng)A'E,從而可得當(dāng)G,河,N三點(diǎn)共線時(shí)GM+九W取得最小值,
即硒■+項(xiàng)4M■取得最小值,然后利用銳角三角函數(shù)和勾股定理可求出GN的長(zhǎng).
5
【詳解】解:如圖,過點(diǎn)河作于點(diǎn)N,作點(diǎn)E關(guān)于的對(duì)稱點(diǎn)G,連接MG,則EM?=MG?.?
由折疊的性質(zhì)可知,EF_LAC,AE=AE,/AEF=AAEF,
ZDAC=AAAE.?.?四邊形ABCD是矩形,:.CD=AB=^,ZZ?=90°.
AD=y/AD2+CD2=4V5.
?/sinZDAC=卷=艱,,sin/A4'E=跡=MLAMN=迪從初,
AC55AM5
EM+攣AM=GM+MN,
5
當(dāng)G,M,N三點(diǎn)共線時(shí)GM+MN取得最小值,即EM+項(xiàng)4M■取得最小值,
5
???ZDAC+/AEF=90°,AEGN+AAEF=90°,/EGN=ADAC,
si.nZ.EGN=sinZDAC=.
5GE
???sin/ZMC=^=?,AE=3,??.OE=^^,??.GE=^^,?=??.EN=M
XIPJ3ODObV3O
5
???GN=J(陪)y第=3
即EM+艱WM■取得最小值是孕.
55
【題型2】胡不歸模型.構(gòu)造相關(guān)角再作垂線
刖]如圖,在平面直角坐標(biāo)系中,二次函數(shù)g=/+3力一4的圖象與力軸交于4、。兩點(diǎn),與g軸交于點(diǎn)8,若
P是立軸上一動(dòng)點(diǎn),點(diǎn)Q(0,2)在沙軸上,連接PQ,則PQ+與PC的最小值是.
【答案】32
【分析】過P作PH工8。,過Q作QH',8。.再由PH=警PC得PQ+浮PC=PQ+PH,根據(jù)垂線
段最短可知,PQ+PH的最小值為Q/T,求出QH'即可.
【詳解】解:連接BC,過P作PH,BC,過Q作QH'±BC,
令g=0,即力旺3/-4=0,解得x=—4或1,,4(1,0),。(一4,0),???
;OB=OC=4,/BOC=90°,
ZPCH=45°,/.PH=PCsin45。=孚PC.
APQ+亨PC=PQ+PH,根據(jù)垂線段最短可知,PQ+PH的最小值為
QH',
BQ=OB+OQ=4+2=6,/QBH'=45°,QHf=sin45°?BQ=3V2,
.?.PQ+卑PC的最小值為32.故答案為:32.
血]2如圖,在長(zhǎng)方形中,48=2,40=2四,點(diǎn)后在反7上,連接?!?;,在點(diǎn)£;的運(yùn)動(dòng)過程中,跳;+
V2DE的最小值為.
【答案】2+2,^/2代+2
【分析】在線段BC下方作/CBM=45°,過點(diǎn)E作石F,于點(diǎn)F,連接。F,求出此時(shí)的。F的長(zhǎng)度便
可.
【詳解】解::四邊形48。。是矩形,人8=2,4。=2遍,
ADCE=9Q°,CD=AB=2,BC=AD=2V3,
BE—2A/3—CE,
在線段BC下方作/困以=45°,過點(diǎn)后作石尸_16河于點(diǎn)尸,連接。下,
:.EF=^BE,
與BE+DE=EF+DE>DF,
當(dāng)D、E、F三點(diǎn)共線時(shí),烏BE+DE=EF+DE=DF的4直最小,
此時(shí)ZDEC=ZBEF=45°,
:.CE=CD=2,
BE=2A/3-2,DE^V22+22=272,
EF=華BE=V6-V2,
當(dāng)BE+DE的最小值為:EF+DE=&+V^,
:.BE+V2DE的最小值為BE+V2DE=V2(^^BE+DE)=2+2V3
變式制揀
[題目曰如圖,在菱形ABCD中,乙45。=60°,40=6,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E在線段AC上,且
AE=2,點(diǎn)F為線段B。上的一個(gè)動(dòng)點(diǎn),則EF+^BF的最小值為.?M
AD
BC
【答案】2/
【分析】過F作可_LBC,由菱形ABOD,乙48。=60°,得到BD為/ABC平分線,求出/FW=30°,在
Rt/\FBM中,利用30°角所對(duì)的直角邊等于斜邊的一半,得至IFM=-j-F,故EF+^BF=EF+FM,求出
EF+EM'的最小值即為所求最小值,當(dāng)E、F、”三點(diǎn)共線時(shí)最小,求出即可.
【詳解】解:過F作
菱形ABCD,60°,
ZFBM=^AABC=30°,=B。,即△ABC為等邊三角形,AACM=60°,
在Rt/XFBM中,F(xiàn)AC^-BF,AD
:.EF+^-BF=EF+FM,/
.?.當(dāng)E、F、M三點(diǎn)共線時(shí),取得最小值,/
AE=2,AC=AB=BC=6,上——R
匕bMC
:.EC=AC-AE=6-2=4:f
在Rt^ECM中,EM=EC-sin60°=4x2=2四,
則EF+5BF的最小值為2心
故答案為:2V3.
題目。如圖,0O是等邊三角形ABC的外接圓,其半徑為4.過點(diǎn)B作BE,AC于點(diǎn)E,點(diǎn)P為線段BE
上一動(dòng)點(diǎn)(點(diǎn)P不與B,E重合),則CP+-j-BP的最小值為.
【答案】6
【分析】過點(diǎn)P作PD,AB,連接CO并延長(zhǎng)交于點(diǎn)F,連接AO,根據(jù)等邊三角形的性質(zhì)和圓內(nèi)接三角
形的性質(zhì)得到OA=OB=4,CF_LAB,然后利用含30°角直角三角形的性質(zhì)得到OE=]<X4=2,進(jìn)而
求出BE=BO+EO=6,然后利用CP+]BP=CP+PD<Cr代入求解即可.
【詳解】如圖所示,過點(diǎn)P作PD_LAB,連接CO并延長(zhǎng)交于點(diǎn)F,連接AO
AAB。是等邊三角形,BE_LAC
ANABE=ACBE=-j-ZABC=30°
VOO是等邊三角形ABC的外接圓,其半徑為4
.?.OA=OB=4,CF±AB,
:.ZOBA=ZOAB=30°
AOAE=AOAB=30°
?:BE±AC
:.OE=^-OA=2
:.BE=BO+EO=6
?:PD±AB,/ABE=30°
PD=±PB
:.CP+卷BP=CP+PDWCF
.?.CP+qBP的最小值為CF的長(zhǎng)度
?.?△ABC是等邊三角形,BE_LAC,CF±AB
:.CF=BE=6
.,.CP+]BP的最小值為6
題目回如圖,在RtAABC中,/ACS=90°,/ABC=30°,AC=4,按下列步驟作圖:①在AC和4B上分別
截取AD.AE,使AD=AE.②分別以點(diǎn)。和點(diǎn)E為圓心,以大于^DE的長(zhǎng)為半徑作弧,兩弧在ABAC
內(nèi)交于點(diǎn)③作射線⑷W■交于點(diǎn)F.若點(diǎn)P是線段AF上的一個(gè)動(dòng)點(diǎn),連接CP,則CP+/AP的
最小值是.
【分析】過點(diǎn)P作PQ,AB于點(diǎn)Q,過點(diǎn)。作CH±48于點(diǎn)先利用角平分線和三角形的內(nèi)角和定理
求出/BAF=30°,然后利用含30°的直角三角的性質(zhì)得出PQ=〈4P,則CP+^-APCP+PQ>CH,
當(dāng)C、P、Q三點(diǎn)共線,且與AB垂直時(shí),CP+4AP最小,CP+/AP最小值為CH,利用含30°的直角三
角的性質(zhì)和勾股定理求出48,BC,最后利用等面積法求解即可.
【詳解】解:過點(diǎn)P作PQ±于點(diǎn)Q,過點(diǎn)。作8,48于點(diǎn)H,
由題意知:AF平分乙民4。,
?/乙4cB=90°,/LABC=30°,
AZBAC=60°,
ZBAF=-j-ZBAC=30°,/.PQ=yAP,
:.CP+^-AP^CP+PQ>CH,
當(dāng)C、P、Q三點(diǎn)共線,且與AB垂直時(shí),CP+,4P最小,CF+44P最小值為CH,
?:ZACB=90°,ZABC=30°,AC=4,:.AB=2AC=8,:.BC=-JA&-AC2=4V3,
VSMBC=^AC-BC^^-AB?CH,:.CH=AC^C=4=273,
即。最小值為2/.故答案為:2遍.
題目⑷如圖,在菱形ABCD中,NABC=60°,人。=6,對(duì)角線AC、BD相交于點(diǎn)。,點(diǎn)E在線段AC上,且
AE=2,點(diǎn)、F為線段BD上的一個(gè)動(dòng)點(diǎn),則EF+^BF的最小值為.
AD
BC
【答案】2小
【分析】過干作N_LBC,由菱形ABCD,乙4BC=60°,得到為乙4BC平分線,求出/FBA1=3O°,在
RtAFBM中,利用30°角所對(duì)的直角邊等于斜邊的一半,得到FM=,故EF+^-BF=EF+EM,求出
EF+FM的最小值即為所求最小值,當(dāng)E、F、河三點(diǎn)共線時(shí)最小,求出即可.
【詳解】解:過F作FN_LBC,菱形ABCD,AABC=6Q°,
:.NFBM=^-AABC=30°,AB=B。,即△ABC為等邊三角形,4ACM=60°,
在RtAFBM中,^BF,AD
:.EF+gBF=EF+FM,//
.?.當(dāng)E、F、M三點(diǎn)共線時(shí),取得最小值,/^\\/
?:AE=2,AC=AB=BC=6,由----黑
匕bMC
??.EC=AC-4石=6—2=4,
在RtZXECAf中,助1=夙7,1160°=4*乎=2-,則EF+—BF的最小值為2/.故答案為:2』.
「題目可如圖,AACB=90°,AC=2,AB=4,點(diǎn)P為AB上一點(diǎn),連接PC,則PC+gpB的最小值為
【答案】3
【解答】解:作NABE=30°,過點(diǎn)。作CD_LBE于點(diǎn)D,
則此時(shí)PC+手犯最小,
/ACB=90°,AC=2,AB=4,
7
sin/CBA—dg-,BC=V42-22=2A/3,
A.B42
??.ZGBA=30°,
??.DP=[pB,
??.ZCBE=60°,
—60。=卷CD_V3
2V32
解得:DC=3,
:.PC+^-PB^DC^3.
故答案為:3.
題目回如圖,在AABC中,乙4=15°,AB=10,P為AC邊上的一個(gè)動(dòng)點(diǎn)(不與A、C重合),連接BP,則
空AP+PB的最小值是()
B
A.5V2B.5V3C.D.8
O
【答案】B
【解答】解:如圖,以AP為斜邊在AC下方作等腰R1AADP,過8作BE_LAD于E,
?//PAD=45°,
.??sin/P4D=%=亭
:.DP=與AP,
號(hào)AP+PB=DP+PB>BE,
?:ABAC=15°,
:./BAD=60°,
BE=ABsin60°=5A/3,
.?.WAP+PB的最小值為5g.故選:A
題目]可如圖,在Rt/XABC中,AACB=90°,AC=4,BC=3,點(diǎn)。是斜邊AB上的動(dòng)點(diǎn),則CD+率AD
【分析】根據(jù)兩點(diǎn)之間線段最短畫出圖形,再根據(jù)銳角三角函數(shù)及相似三角形判定可知△BCE?△BAG,最
后利用相似三角形的性質(zhì)及直角三角形的性質(zhì)即可解答.
【詳解】解:過點(diǎn)人做ABAM=45°,過點(diǎn)。作。H_L入河于H,過點(diǎn)。作CE_L4B于點(diǎn)E,
DH=AD-sin^DAH=AD-sin45°=殍皿
.-.CD+^AD^CD+DH,
?.?兩點(diǎn)之間線段最短,
當(dāng)C、D、H共線時(shí),CD+DH的值最小,
即CD+DH的最小值為CH,
【法一:正切和角公式】詳情見本專輯1—3“12345模型”
tan/G4H=——%=7,故的三邊之比為1:7:52,則答案為衛(wèi)衛(wèi)
I-A5
14
【法二:常規(guī)法】
???ZACB=90°,AC=4,BC=3,
??.AB=A/AC2+BC2=5,
?:CE±AB9
:.26£石=乙4cB=90°,
???ZB=ZB,
:./\BCE-/\BAC,
.CE=BE=BC=3
**AC-BC-AB--5-,
.?.CE=1_X4=.,BE=1~X3=£,
5555
ZCDE=4ADH=45°,DE=CE=",
5
:.CD=6CE=^f^,AD=AB-OE-BE=5-孕一?=二,
5555
DH=^-AD=x4=,ACH=CD+DH=衛(wèi)返+22二四2,故答案為辿2
22555555
題目回如圖,在矩形ABCD中,AB=1,BC=V^,點(diǎn)兇是對(duì)角線AC上的動(dòng)點(diǎn),連接。河,則。河+;4河
的最小值為.
【答案】等
[分析】直接利用已知得出2CAB=60°,再將原式變形,進(jìn)而得出ZW+^-AM最小值,進(jìn)而得出答案.
【詳解】過點(diǎn)A作NCAN=30°,過點(diǎn)。作DH_LAN于點(diǎn)H,交AC于點(diǎn)M',
在矩形ABCD中,AB=1,BC=四,.?.tan/CAB=四,:./-CAB=60°,則ADAC=30°,
?:5Ao+M'D=HM'+M'D=DH=AD-sin60°=V3x^=-1,
此時(shí)zw+fw最小,.?.zw+/w的最小值是故答案為:告.
模型二阿氏圓模型
和鶴楹理
【模型來源】
所謂阿氏圓,就是動(dòng)點(diǎn)到兩定點(diǎn)距離之比為定值,那么動(dòng)點(diǎn)的軌跡就是圓,這個(gè)圓,稱為阿波羅尼斯圓,簡(jiǎn)
稱為阿氏圓.其本質(zhì)就是通過構(gòu)造母子相似,化去比例系數(shù),轉(zhuǎn)化為兩定一動(dòng)將軍飲馬型求最值,難點(diǎn)在于如
何構(gòu)造母子相似.
【模型建立】
如圖1所示,。。的半徑為了,點(diǎn)4B都在0。外,P為。。上一動(dòng)點(diǎn),已知丁=上??冢B接則當(dāng)
“PA+的值最小時(shí),P點(diǎn)的位置如何確定?
圖1圖2
【解題方法】
如圖2,在線段OB上截取。。使OC=k-r,則可說明/\BPO與/\PCO相似,即k-PB=PC.
故本題求“PA+的最小值可以轉(zhuǎn)化為“PA+PC”的最小值,
其中與力與。為定點(diǎn),P為動(dòng)點(diǎn),故當(dāng)A、P、。三點(diǎn)共線時(shí),“P4+PC”值最小,如圖3所示。
例題斛新
【題型1】?jī)啥c(diǎn)在圓外:向內(nèi)取點(diǎn)(系數(shù)小于1)
血_如圖,在用△ABC中,ZACB=90°,CB=4,=6,圓。的半徑為2,點(diǎn)P為圓上一動(dòng)點(diǎn),連接4P,
BP.求①AP+三BP;②2Ap+BP;③^-AP+BP;?AP+3BP的最小值.
【解答】解:①取CE的中點(diǎn)。,連結(jié)PD,AD,4
,:CD=\,CB=4,CP=2,\\
.CD=CP=XV
"CPBC2)\
APCD=ZBCP,^PCD?^BCP,
PDCDI/,
.PB=CP=2_'/\/i
:.PD=^-PB,1D
AP+4PB=AP+PD,當(dāng)P在AD上時(shí),AP+PD最小,---/
最小值為AF的長(zhǎng),AF=^AC2+CF2=V37,AP+^BP的最小值為V37,
②^.^2AP+BP=2(4P+。BP),.^.2AP+BP的最小值為2扃,
③在DC取一點(diǎn)G,使CG=^-DC=-f
oo???
2
CG=3=1CP=2=1
CG=CP
PC~ACf
???AACP=APCG,???ACGF?bCPA,
?gp—CG—x?QP——AP
"AP~PC~39*3,
???三AP+BP=GP+BP>BG,當(dāng)P在BG上B,GP+BP=BG,
o
BG=-JBC\CG2=“|&二等工,.?."AP+RP的最小值為2?
④?/AP+3BP=3(yAF+BP),??.AP+3BF的最小值為2抵.
【題型2】?jī)啥c(diǎn)在圓內(nèi):向外取點(diǎn)(系數(shù)大于1)
血]1如圖,在。。中,點(diǎn)4、點(diǎn)3在OO上,ZAOB=90°,。4=6,點(diǎn)。在。4上,且OC=2AC,點(diǎn)。是OB
的中點(diǎn),點(diǎn)乂是劣弧AB上的動(dòng)點(diǎn),則CM+2ZW的最小值為.
【答案】461
【分析】延長(zhǎng)OB到T,使得BT=OB,連接MT,CT,利用相似三角形的性質(zhì)證明AfT=2DM,求CM+
2ZW的最小值問題轉(zhuǎn)化為求C7W+MT的最小值.求出CT即可判斷.
【詳解】解:延長(zhǎng)OB到T,使得BT=OB,連接MT,CT.
■:OM=6,OD=DB=3,OT=12,
:.OM2=OD-OT,
.OM_OT
"OD~OM'
■:AMOD=ATOM,
.-.△won-ATOM,
.DM_OM1
"MT~OT~~2)
:.MT=2DM,
?:CM+2DM=CM+MT>CT,
又?.?在A/OCT中,/COT=90°,OC=4,OT=12,
CT=VOC2+OT2=A/42+122=4V10,
:.CM+2DM>^VW,
:.CM+2DM■的最小值為4V10
【題型3】?jī)啥c(diǎn)一個(gè)在圓內(nèi),一個(gè)在圓外(提系數(shù))
而J1如圖,在AABC中,/ABC=90°,AB=2BC=6,RD=1,P在以B為圓心3為半徑的圓上,則AP+
6P。的最小值為3抵
???AB=2BC=6,
.BP=BE=1
"BP-T,
???/PBE=/ABP,
???XPBE?XABP,
.PE=BP=1
**FA-AB-T,
:.PE=^-PA,
在BO延長(zhǎng)線上取BF=9,
BD=1,
則理=理=3
PBBD'
又APBD=AFBP,
:.XPBDfFBP,
?PF_PB__
"PD~BD-3o,
:.PF=3PD,
:.PA+6PD=2(-PA+3PD)=2(PE+PF),
當(dāng)P為EF和圓的交點(diǎn)時(shí)PE+PF最小,即P4+6P。最小,且值為2EF,
?:EF=^/BE2+BF2=J傳):92=,
PA+6PD的最小值為2E尸=3〃方,
故答案為:3府.
【題型4】隱圓型阿氏圓
@]j_如圖,在菱形4BCD中,對(duì)角線A。、BD相交于點(diǎn)。,點(diǎn)E、F分別是OD、OC上的兩個(gè)動(dòng)點(diǎn),且EF=
4,P是EF的中點(diǎn),連接OP、PC、PD,若AC=12,BD=16,則PC+^PD的最小值為.
D
【答案】上野
【分析】在OD上取一點(diǎn)G,使得OG=J,連接PG、CG.根據(jù)菱形的性質(zhì)可知00=6,00=8,則黑
=OD=[,結(jié)合2GOP=APOD,可得4POG?△OOP,利用相似三角形的性質(zhì)證得PG+^-PD.根
據(jù)PC+POCG可知CG的長(zhǎng)即為PC+--PD的最小值,利用勾股定理求出CG便可解決問題.
【詳解】解:如圖,在OD上取一點(diǎn)G,使得OG=],連接PG、CG.
?:四邊形ABCD為菱形,AC=12,BZ)=16,
OC=^-AC=Q,OD=^-BD=8,AC±BD,
?.?^^^《,?是后尸的中點(diǎn),
OP=^-EF=2,
1
.OG=J=1OP=2=1
"OF-T-T,on--8-T*
又???/GOP=/PO。,
???AFOG?ADOP,
罌J,即GP=%D,
■:PC+PG>CG,
:.當(dāng)點(diǎn)G、P、C在同一直線上時(shí),PC+:PD取得最小值,
此時(shí)PC+~PD=PC+PG=CG=JS+OG?=
42
變式制揀
題目上如圖,在中,乙4cB=90°,CB=7,AC=9,以。為圓心、3為半徑作。C,P為。。上一
動(dòng)點(diǎn),連接AP、BP,則:AP+BP的最小值為()
O
A
B.5V2c.4+VioD.2V13
【答案】B
【詳解】思路引領(lǐng):如圖,在CA上截取CM,使得CM=1,連接PM,PC,BM.利用相似三角形的性質(zhì)證
明MP=^-PA,可得^-AP+BP=PM+PB>利用勾股定理求出BM即可解決問題.
OO
答案詳解:如圖,在CA上截取C7W;使得671^=1,連接PA/,PC,A
vFC=3,CM=\,CA=9,N
vZPCM=Z.ACP,NPCM-/\ACP,/
.??^-=^-=4,:.PM=^-PA,:.j-AP+BP=PM+PB,(少午A
JrJT.AC/O00\U/
?:PM+PB>BM,在RtABCM中,
?:ZBCM=9Q°,CM=1,BC=7,
:.BM=A/12+72=5V2,^-AP+BP>5V2,
o
.?.《AP+BP的最小值為52.故選:B.
題目⑨如圖,正方形ABC。的邊長(zhǎng)AB=8,H為平面內(nèi)一動(dòng)點(diǎn),且AE=4,F為CD上一點(diǎn),CF=2,連接
則的最小值為()
AD
B
A.6V2C.4V2
【答案】A
【分析】如圖(見解析),在AD邊上取點(diǎn)H,使得4H=2,連接EH、FH,先根據(jù)正方形的性質(zhì)得出AD=
CD=AB=8,/ADC=90°,再根據(jù)相似三角形的判定與性質(zhì)得出黑=萼,從而可得然
EDAD2
后利用三角形的三邊關(guān)系定理、兩點(diǎn)之間線段最短可得EF+片ED取得最小值時(shí),點(diǎn)E的位置,最后利用
勾股定理求解即可得.
【詳解】如圖,在AD邊上取點(diǎn)玄,使得AH=2,連接EH、FH
?.?四邊形48co是正方形:.AD=CD=AB=8,AADC=90°
??AE=4?人石=2=2=3=2即=""=2
?**AH2JAE4f?AHAE
又?.?NEAH=/DAE:.AAEH-/\ADE:.--=嘴=小,即m=&ED
h/L)AD82
:.EF+三ED=EF+EH由三角形的三邊關(guān)系定理得:EF+EH>FH
由題意得:點(diǎn)E的軌跡是在以點(diǎn)A為圓心,AE長(zhǎng)為半徑的圓上
由兩點(diǎn)之間線段最短可知,當(dāng)點(diǎn)E位于FH與圓?1的交點(diǎn)E'時(shí),EF+EH取得最小值,最小值為FH
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025新版國(guó)際機(jī)械設(shè)備租賃合同范本
- 2025年私人出租住房定金合同
- 2025版VI設(shè)計(jì)合同樣本(合同版本)
- 2025華能霞浦核電開發(fā)有限公司應(yīng)急指揮中心生活水管道施工合同
- 吞咽康復(fù)操作規(guī)范
- 2025年訂立共同投資股份公司管理章程合同
- 優(yōu)化探究政治課件
- 2025杭州市裝修合同模板
- 2025年合同審核重點(diǎn)注意事項(xiàng)
- 委托小學(xué)建設(shè)協(xié)議
- 2025年北京科技職業(yè)學(xué)院高職單招職業(yè)技能測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 汽車底盤構(gòu)造課件:離合器
- 基于幾類機(jī)器學(xué)習(xí)模型預(yù)測(cè)肥胖成因的分析比較
- 南京理工大學(xué)泰州科技學(xué)院《電路》2023-2024學(xué)年第一學(xué)期期末試卷
- 人教版九上《Unit 10 Youre supposed to shake hands》作業(yè)設(shè)計(jì)
- 《防范于心反詐于行》中小學(xué)防范電信網(wǎng)絡(luò)詐騙知識(shí)宣傳課件
- 大象版小學(xué)科學(xué)新版四年級(jí)上冊(cè)科學(xué)實(shí)驗(yàn)記錄單
- 2021版十八項(xiàng)醫(yī)療質(zhì)量安全核心制度附流程圖
- 神經(jīng)內(nèi)科護(hù)理教學(xué)查房護(hù)理病歷臨床病案
- TCASME 1525-2024 工業(yè)用甲縮醛
- 《證券投資學(xué)》全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論