




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人工智能前沿專題第0頁(yè)-大語(yǔ)言模型基礎(chǔ)導(dǎo)論TheFrontierTopicsinArtificialIntelligence-FoundationsofLargeLanguageModels&GenerativePretrainedTransformerHonggangZHANG張宏綱CityUniversityofMacauJanuary-June,2025,Macau112A.AllYouInformation2017),Vaswani,N.Shazeer,etal.,“AttentionIsNeed,”31stA.AllYouInformation2017),ProcessingSystems(NIPSCA,USA,2017.---------------------------------------》4A.Vaswani,N.Shazeer,etal.,“AttentionIsAllYouNeed,”31stConferenceonNeuralInformationProcessingSystems(NIPS2017),CA,USA,2017.66“ScalingLawsforNeuralLanguageModels”9 ③RLHF-ReinforcementTransformerBlock/LayerQRepresentativeLLMsandtheirKeyParametersSurvey4040414242Application-basedtaxonomyof43ComprehensiveSurveyonTransformer444647484922website.ThankstothDeepSeek-V3/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdfDeepSeek-V3/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdfDeepSeek-V3TechniqueReport/deepseek-ai/DeepSeek-R1/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf/deepseek-ai/DeepSeek-AugmentedGeneration(33nnAgentsnn4nIEEETRANSACTIONSONNEURALNETWORKSANDLEARNINGSYSTEMS,VOL.34,NO.8,AUGUST2023nIEEETRANSACTIONSONAssociationfor5narXiv:2306.00802v1[stat.ML]1Jun2023narXiv:2306.00802v1[stat.ML]1Jun2023website.Thankstotheauthors.website.Thankstotheauthors.6AlgorithmsandData-DrivennarXiv:2304.08818v1[cs.CV]18Apr20237GPT(NetGPT)andotherNetwork-basedGenerativePretrainedTransformer&LLMsCloudLLMsNetGPTLarge-scaleLanguage/ImageDataLarge-scaleKnowledgeGraphFullyOffloadingLLMsfromDividingLLMsbetweenEstablishingLLMsSynergyCloudtoEdgeCloudandEdgewithCloudandEdgeCollaboration-ModelingArchitectureandMechanismsYuxuanChen,RongpengLi,Z.Zhao,ChegnhuiPeng,JianjunWu,EkramHossainandHonggangZhang,“NetGPT:AnAI-NativeNetworkArchitectureforProvisioningBeyondPersonalizedGenerativeServices”,IEEENetwork,March2024.Low-rankadaptation(LoRA):lightweightfinetuningforLLMsThemainideaistoaddabypassnextLow-rankadaptation(LoRA):lightweightfinetuningforLLMsThemainideaistoaddabypassnexttothemodelweight,withsmallinternalrankr,andreducethenumberoftrainableparametersfordownstreamtasksRegardingLLaMA-7B,therequiredVRAMdecreasefrom112GBto28GB,forportabledevicesrrdinweightdinParametersTransformerLevel/HeadGPT-2-base768GPT-2-Medium345M24/16GPT-2-Large774M36/24GPT-2-XL48/32ParametersTransformerLevel/HeadLLaMA-7B6.7B32/324096LLaMA-13B40/405120LLaMA-33B32.5B60/526656LLaMA-65B65.2B80/648192models,"arXivpreprintarXiv:2106.09685(2021).-ModelingArchitectureandMechanisms(cont.)LLaMA-7B-WorkingMechanismsandFlowPathsCloudLLMs-RepresentativeExamplesandPerformanceCloudLLMsCloudLLMs-EnablingIntent-DrivenNetworksandServicesNetGPTbyCloud,Edge&UserCoweleverageasample-efficiendeterminethesuitableYuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.NetGPTbyCloud,Edge&UserCoOverviewoftheLLMsplittingarchitectureinwirelesschannel,withlayer3designatedastheexamplesplittingpoint.Weusethe32-layerLLaMA2-7Bmodelasanexample.Underdifferentsplittingpointsoftransformerblocks,verifyhowchannelnoisewouldaffecttheLLMinferenceperformanceYuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.196YuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.197ComparisonoftrainingperformancesfordifferentRLapproachesunderCaseL,CaseH,andCaseACaseL:Lowpacketlossprobability0~0.1andaninitialsplittingpointneartheinput(layers1-5)CaseH:Highpacketlossprobability0.1~0.3andaninitialsplittingpointfarfromtheinput(layers6-10)CaseA:Completerangeofpacketlossprobability0~0.3andinitialsplittingpoints(layers1-10)ElectronicEngineerThe“TenIssuesofNetGPT”Announcedby6GANA(6GAllianceof6GnetworkAI-relatedtechnologies,stand200201 The“TenIssuesofNetGPT”Announced 202The“TenIssuesofNetGPT”Announcedby6GANA(6GAllianceof?Issue7:SecurityandPrivacyofNetGPT?Issue8:DataGovernanceofNetGPT?Issue9:EvaluationandMetricsofNetGPTwithServiceLevelAgreement203The“TenIssuesofNetGPT”Announcedby6GANA204WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6G205WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm206206WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm207207WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm208208WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm209209Belgrade,Serbia,25-210Serbia,25-27211TheVisionandFrameworkforNetwork-NativeAIand212arXiv:2103.02823,March2021.212Network-NativeAIandNetG≤—≤
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 心電監(jiān)護(hù)的理論知識(shí)
- 年度綜合部個(gè)人工作總結(jié)
- 中考數(shù)學(xué)高頻考點(diǎn)專項(xiàng)練習(xí):專題13 考點(diǎn)28 特殊三角形 (3)及答案
- 護(hù)理安全及風(fēng)險(xiǎn)管理課件
- 2025年私募股權(quán)投資項(xiàng)目合作計(jì)劃書
- 心血管科入科教育
- 初中考高中的知識(shí)點(diǎn)總結(jié)
- 2025屆湖北省鄂東南省級(jí)示范高中教育教學(xué)改革聯(lián)盟學(xué)校高三下第一次測(cè)試化學(xué)試題含解析
- 工程項(xiàng)目的安全管理
- 2025屆廣東省江門市普通高中高三壓軸卷化學(xué)試卷含解析
- 2025年遼寧省盤錦市事業(yè)單位公開(kāi)招聘高校畢業(yè)生歷年高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 2025年浙江杭州建德市林業(yè)總場(chǎng)下屬林場(chǎng)招聘8人高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 流行性感冒診療方案(2025年版)權(quán)威解讀
- 《水庫(kù)大壩安全監(jiān)測(cè)管理辦法》知識(shí)培訓(xùn)
- 裂隙等密度(玫瑰花圖)-簡(jiǎn)版
- 2025年河南工業(yè)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 2025年寧波職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 2024版射箭館會(huì)員訓(xùn)練協(xié)議3篇
- 《新能源汽車滾裝運(yùn)輸安全技術(shù)指南》2022
- 品管圈FOCUS-PDCA案例-神經(jīng)外科提高腦卒中偏癱患者良肢位擺放合格率
- 常用消毒劑的分類、配制及使用課件演示幻燈片
評(píng)論
0/150
提交評(píng)論