人工智能前沿專題-大語(yǔ)言模型基礎(chǔ)導(dǎo)論_第1頁(yè)
人工智能前沿專題-大語(yǔ)言模型基礎(chǔ)導(dǎo)論_第2頁(yè)
人工智能前沿專題-大語(yǔ)言模型基礎(chǔ)導(dǎo)論_第3頁(yè)
人工智能前沿專題-大語(yǔ)言模型基礎(chǔ)導(dǎo)論_第4頁(yè)
人工智能前沿專題-大語(yǔ)言模型基礎(chǔ)導(dǎo)論_第5頁(yè)
已閱讀5頁(yè),還剩491頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人工智能前沿專題第0頁(yè)-大語(yǔ)言模型基礎(chǔ)導(dǎo)論TheFrontierTopicsinArtificialIntelligence-FoundationsofLargeLanguageModels&GenerativePretrainedTransformerHonggangZHANG張宏綱CityUniversityofMacauJanuary-June,2025,Macau112A.AllYouInformation2017),Vaswani,N.Shazeer,etal.,“AttentionIsNeed,”31stA.AllYouInformation2017),ProcessingSystems(NIPSCA,USA,2017.---------------------------------------》4A.Vaswani,N.Shazeer,etal.,“AttentionIsAllYouNeed,”31stConferenceonNeuralInformationProcessingSystems(NIPS2017),CA,USA,2017.66“ScalingLawsforNeuralLanguageModels”9 ③RLHF-ReinforcementTransformerBlock/LayerQRepresentativeLLMsandtheirKeyParametersSurvey4040414242Application-basedtaxonomyof43ComprehensiveSurveyonTransformer444647484922website.ThankstothDeepSeek-V3/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdfDeepSeek-V3/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdfDeepSeek-V3TechniqueReport/deepseek-ai/DeepSeek-R1/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf/deepseek-ai/DeepSeek-AugmentedGeneration(33nnAgentsnn4nIEEETRANSACTIONSONNEURALNETWORKSANDLEARNINGSYSTEMS,VOL.34,NO.8,AUGUST2023nIEEETRANSACTIONSONAssociationfor5narXiv:2306.00802v1[stat.ML]1Jun2023narXiv:2306.00802v1[stat.ML]1Jun2023website.Thankstotheauthors.website.Thankstotheauthors.6AlgorithmsandData-DrivennarXiv:2304.08818v1[cs.CV]18Apr20237GPT(NetGPT)andotherNetwork-basedGenerativePretrainedTransformer&LLMsCloudLLMsNetGPTLarge-scaleLanguage/ImageDataLarge-scaleKnowledgeGraphFullyOffloadingLLMsfromDividingLLMsbetweenEstablishingLLMsSynergyCloudtoEdgeCloudandEdgewithCloudandEdgeCollaboration-ModelingArchitectureandMechanismsYuxuanChen,RongpengLi,Z.Zhao,ChegnhuiPeng,JianjunWu,EkramHossainandHonggangZhang,“NetGPT:AnAI-NativeNetworkArchitectureforProvisioningBeyondPersonalizedGenerativeServices”,IEEENetwork,March2024.Low-rankadaptation(LoRA):lightweightfinetuningforLLMsThemainideaistoaddabypassnextLow-rankadaptation(LoRA):lightweightfinetuningforLLMsThemainideaistoaddabypassnexttothemodelweight,withsmallinternalrankr,andreducethenumberoftrainableparametersfordownstreamtasksRegardingLLaMA-7B,therequiredVRAMdecreasefrom112GBto28GB,forportabledevicesrrdinweightdinParametersTransformerLevel/HeadGPT-2-base768GPT-2-Medium345M24/16GPT-2-Large774M36/24GPT-2-XL48/32ParametersTransformerLevel/HeadLLaMA-7B6.7B32/324096LLaMA-13B40/405120LLaMA-33B32.5B60/526656LLaMA-65B65.2B80/648192models,"arXivpreprintarXiv:2106.09685(2021).-ModelingArchitectureandMechanisms(cont.)LLaMA-7B-WorkingMechanismsandFlowPathsCloudLLMs-RepresentativeExamplesandPerformanceCloudLLMsCloudLLMs-EnablingIntent-DrivenNetworksandServicesNetGPTbyCloud,Edge&UserCoweleverageasample-efficiendeterminethesuitableYuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.NetGPTbyCloud,Edge&UserCoOverviewoftheLLMsplittingarchitectureinwirelesschannel,withlayer3designatedastheexamplesplittingpoint.Weusethe32-layerLLaMA2-7Bmodelasanexample.Underdifferentsplittingpointsoftransformerblocks,verifyhowchannelnoisewouldaffecttheLLMinferenceperformanceYuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.196YuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.197ComparisonoftrainingperformancesfordifferentRLapproachesunderCaseL,CaseH,andCaseACaseL:Lowpacketlossprobability0~0.1andaninitialsplittingpointneartheinput(layers1-5)CaseH:Highpacketlossprobability0.1~0.3andaninitialsplittingpointfarfromtheinput(layers6-10)CaseA:Completerangeofpacketlossprobability0~0.3andinitialsplittingpoints(layers1-10)ElectronicEngineerThe“TenIssuesofNetGPT”Announcedby6GANA(6GAllianceof6GnetworkAI-relatedtechnologies,stand200201 The“TenIssuesofNetGPT”Announced 202The“TenIssuesofNetGPT”Announcedby6GANA(6GAllianceof?Issue7:SecurityandPrivacyofNetGPT?Issue8:DataGovernanceofNetGPT?Issue9:EvaluationandMetricsofNetGPTwithServiceLevelAgreement203The“TenIssuesofNetGPT”Announcedby6GANA204WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6G205WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm206206WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm207207WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm208208WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm209209Belgrade,Serbia,25-210Serbia,25-27211TheVisionandFrameworkforNetwork-NativeAIand212arXiv:2103.02823,March2021.212Network-NativeAIandNetG≤—≤

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論