天津國土資源和房屋職業(yè)學院《標識系統(tǒng)設計》2023-2024學年第二學期期末試卷_第1頁
天津國土資源和房屋職業(yè)學院《標識系統(tǒng)設計》2023-2024學年第二學期期末試卷_第2頁
天津國土資源和房屋職業(yè)學院《標識系統(tǒng)設計》2023-2024學年第二學期期末試卷_第3頁
天津國土資源和房屋職業(yè)學院《標識系統(tǒng)設計》2023-2024學年第二學期期末試卷_第4頁
天津國土資源和房屋職業(yè)學院《標識系統(tǒng)設計》2023-2024學年第二學期期末試卷_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁天津國土資源和房屋職業(yè)學院

《標識系統(tǒng)設計》2023-2024學年第二學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺在安防監(jiān)控領域有廣泛應用。假設要通過監(jiān)控攝像頭實時檢測人群中的異常行為,以下哪種方法可能需要大量的標注數(shù)據(jù)進行訓練?()A.基于規(guī)則的方法B.基于深度學習的方法C.基于背景減除的方法D.基于幀差法的方法2、視頻理解是計算機視覺中的一個具有挑戰(zhàn)性的任務。以下關于視頻理解的敘述,不準確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時間關系B.循環(huán)神經(jīng)網(wǎng)絡(RNN)和長短期記憶網(wǎng)絡(LSTM)在處理視頻序列數(shù)據(jù)時具有優(yōu)勢C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應用前景D.目前的視頻理解技術已經(jīng)能夠完全理解復雜場景下的視頻內(nèi)容,不存在任何挑戰(zhàn)3、人臉識別是計算機視覺的一個重要應用。假設一個公司使用人臉識別系統(tǒng)進行員工考勤。以下關于人臉識別技術的描述,哪一項是錯誤的?()A.它可以通過提取面部特征,如眼睛、鼻子和嘴巴的形狀和位置,來進行身份識別B.能夠適應不同的表情、姿態(tài)和光照變化,保持較高的識別準確率C.人臉識別系統(tǒng)的安全性極高,不存在被欺騙或誤識別的可能性D.深度學習模型在人臉識別中表現(xiàn)出色,大大提高了識別性能4、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中的應用可以提供更沉浸式的體驗。假設要在VR環(huán)境中實時跟蹤用戶的頭部運動并相應地更新場景,以下關于VR/AR計算機視覺應用的描述,正確的是:()A.簡單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運動跟蹤需求B.計算機視覺在VR/AR中的應用主要關注圖像生成,而不是跟蹤和定位C.結合視覺特征提取和深度學習的頭部運動跟蹤算法可以實現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對計算機視覺算法的性能沒有影響5、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和理解。假設要識別一段舞蹈視頻中的各種舞蹈動作,同時要考慮動作的速度、幅度和風格的變化。以下哪種動作識別方法在處理這種復雜的動作模式時表現(xiàn)更好?()A.基于手工特征的動作識別B.基于時空興趣點的動作識別C.基于深度學習的時空卷積網(wǎng)絡D.基于隱馬爾可夫模型的動作識別6、在計算機視覺的目標跟蹤任務中,持續(xù)跟蹤視頻中的特定目標。假設要跟蹤一個在人群中行走的人,以下關于目標跟蹤方法的描述,哪一項是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預測目標的位置和狀態(tài)B.基于深度學習的方法能夠學習目標的外觀特征,提高跟蹤的準確性和魯棒性C.目標跟蹤過程中,目標的外觀變化、遮擋和背景干擾等因素不會對跟蹤結果產(chǎn)生影響D.結合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢,提高跟蹤性能7、計算機視覺中的遙感圖像分析用于獲取地球表面的信息。假設要從衛(wèi)星遙感圖像中分析土地利用類型和植被覆蓋情況,同時要克服圖像的大尺度和復雜的地物分布。以下哪種遙感圖像分析方法最為有效?()A.基于光譜特征的分析B.基于紋理特征的分析C.基于對象的圖像分析D.基于深度學習的分析8、計算機視覺在體育賽事分析中的應用可以提供更多的數(shù)據(jù)和見解。假設要分析一場足球比賽中球員的跑動軌跡和動作。以下關于計算機視覺在體育賽事中的描述,哪一項是不準確的?()A.可以通過對視頻的分析,自動跟蹤球員的位置和運動軌跡B.能夠對球員的動作進行分類,如傳球、射門和防守C.計算機視覺在體育賽事分析中的結果可以直接作為裁判的判罰依據(jù),無需人工復查D.可以結合多攝像頭的信息,獲取更全面和準確的比賽數(shù)據(jù)9、在計算機視覺的視覺跟蹤任務中,目標在運動過程中可能會發(fā)生形變、遮擋和光照變化等情況。為了提高跟蹤的穩(wěn)定性和準確性,以下哪種策略可能是有效的?()A.模型更新機制B.多特征融合C.抗遮擋處理D.以上都是10、在計算機視覺的應用中,人臉識別是一個常見的任務。假設一個公司要建立一個門禁系統(tǒng),通過人臉識別來允許員工進入。為了提高人臉識別的準確性和魯棒性,以下哪種技術通常會被采用?()A.基于幾何特征的人臉識別B.基于模板匹配的人臉識別C.基于深度學習的人臉識別,結合多模態(tài)數(shù)據(jù)D.基于顏色特征的人臉識別11、在計算機視覺中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個區(qū)域具有相似的特征。以下關于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進行B.深度學習方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(FCN)C.圖像分割在醫(yī)學影像分析、自動駕駛場景理解等方面具有重要作用D.圖像分割的結果總是完美的,能夠準確地將圖像中的所有物體都分割出來12、計算機視覺中的行人重識別是在不同攝像頭拍攝的圖像或視頻中識別出特定的行人。以下關于行人重識別的敘述,不正確的是()A.行人重識別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學習方法在行人重識別任務中取得了顯著的性能提升C.行人重識別在智能安防、視頻監(jiān)控和人員追蹤等領域有重要的應用D.行人重識別技術已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達到100%的準確率13、計算機視覺中的圖像風格遷移是一項有趣的任務。假設要將一幅油畫的風格應用到一張照片上,以下關于模型訓練的要點,哪一項是不正確的?()A.學習油畫和照片的特征表示,找到風格和內(nèi)容的分離方式B.只關注風格的遷移,不考慮照片原始內(nèi)容的保留C.采用對抗訓練,使生成的圖像在風格和內(nèi)容上達到平衡D.調整模型參數(shù),控制風格遷移的強度和效果14、計算機視覺中的場景文本識別旨在從圖像中識別出文字信息。假設要在一張街景圖像中識別出店鋪招牌上的文字。以下關于場景文本識別方法的描述,正確的是:()A.基于光學字符識別(OCR)技術的方法對字體和排版的變化適應性強,識別準確率高B.深度學習中的端到端文本識別模型能夠處理彎曲和變形的文本,但對模糊文本效果不佳C.場景文本識別只需要關注文本的內(nèi)容,不需要考慮文本的位置和上下文信息D.所有的場景文本識別方法都能夠在復雜的自然場景中準確無誤地識別出各種文字15、在計算機視覺中,以下哪種技術常用于圖像的超分辨率重建的上采樣方法?()A.反卷積B.亞像素卷積C.最近鄰插值D.以上都是二、簡答題(本大題共3個小題,共15分)1、(本題5分)說明計算機視覺在海洋聲學研究中的作用。2、(本題5分)計算機視覺中如何進行圖像的去噪處理?3、(本題5分)說明計算機視覺在交通流量預測中的應用。三、應用題(本大題共5個小題,共25分)1、(本題5分)運用圖像分類技術,對不同種類的牙雕進行分類。2、(本題5分)設計一個程序,通過計算機視覺識別不同款式的帽子。3、(本題5分)基于計算機視覺的智能交通信號燈控制系統(tǒng),根據(jù)實時交通流量調整信號燈時長。4、(本題5分)對電影特效制作中的綠幕圖像進行精確摳像處理。5、(本題5分)利用圖像分割技術,從腦電圖中分割出異常波段。四、分析題(本大題共3個小題,共30分)1、(本題10分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論