系統(tǒng)生物學IV-細胞仿真學習資料_第1頁
系統(tǒng)生物學IV-細胞仿真學習資料_第2頁
系統(tǒng)生物學IV-細胞仿真學習資料_第3頁
系統(tǒng)生物學IV-細胞仿真學習資料_第4頁
系統(tǒng)生物學IV-細胞仿真學習資料_第5頁
已閱讀5頁,還剩56頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

劉筆鋒教授華中科技大學生命科學與技術學院系統(tǒng)生物學IV------細胞仿真1Content1.VirtualBiologicalLaboratory2.ComputationalCellBiology—TheStochasticApproach計算細胞生物學——隨機法3.AWhole-CellComputationalModel計算模型PredictsPhenotypefromGenotype2VirtualBiologicalLaboratoryOutlineForasystem-levelunderstandingoflivingcells,aquantitativerepresentationofthesesystemsinvolvingmathematicalmodelsandcorrespondingcomputertoolsisrequired.

Modelingconceptwhichreliesuponmodularstructuringofcellularsystemsfocusingstronglyonthebiomolecularstructureofthesesystems.IntheVirtualBiologicalLaboratory,theprocessmodelingtoolPROMOTcontainsanobject-orientedknowledgebasewithreusablemodelingentitiesandenablesapurelysymbolicalmodeldevelopmentprocessviaagraphicaluserinterface.ThesimulationenvironmentDIVAthenusesthemodellibraryfordynamicsimulation,parameterestimationandmodelanalysis.

TwoexamplesofmodelsofcomplexregulatorynetworksinEscherichiacoliandinSaccharomycescerevisiaearegiven.3VirtualBiologicalLaboratoryIntroductionCurrentstatusSystem-levelunderstandingofhowcellsandorganismsfunctionisactuallyveryrudimentary,duetotworeasons:系統(tǒng)水平上理解細胞和生物體的功能處于非常初級的階段。主要原因:1.Theoverwhelmingpartofexperimentalinvestigationscanbecharacterizedasqualitativeanddescriptive.2.duetothecomplexityofcellularsystemseventhe(nearly)completemeasurementofthesystems’stateswillnotenableanintegratedunderstandingofallrelevantfunctionalconnectionsandtheirinfluenceontheobservablebehavior.系統(tǒng)水平上理解細胞和生物體的功能處于非常初級的階段。主要原因:其一,對于生物分子細節(jié)的理解,目前絕大部分的實驗是定性的和描述性的;其二,由于細胞系統(tǒng)的復雜性,即使是對系統(tǒng)狀態(tài)本身完全(或接近完全)的測量也無法獲得所有相關功能聯(lián)系的整體性認識,以及它們對于可觀察行為的影響。4VirtualBiologicalLaboratoryIntroductionApproach:mathematicalmodelsExamples:E-Cell(Tomitaetal.,1999),VirtualCell(Schaffetal.,1997)twomajorchallengesfortheapplicationofmathematicalconceptsinthelifesciencesstillhavetoberesolved:1.Aconceptionalframeworkpromotinginterdisciplinaryresearchinthisdirectionbyfindinga”common”,non-mathematicallanguage.2.Aclearlydefinedmodelingconceptadaptedtocellularsystemsthatallowsforeasymodeldevelopmentandinterpretation.systemsarecomposedof’functionalunitsormodules.system-andsignal-orientatedmodelingconceptforcellularsystems.5VirtualBiologicalLaboratoryModularModelingConceptWhyandHowitcouldbepossible?Livingcellbeingcomposedofsubunitsoflimitedautonomy(functionalunits).Submodelsasentitiesinthe”modelworld”correspondtofunctionalunitsinthe”realworld”.Identificationandrepresentationoffunctionalunits,thatis,howtodemarcatetheseunits,i.e.howtodecomposeacomplexcellularbiochemicalnetworkintosmallerunits.6VirtualBiologicalLaboratory1.GeneralreflectionsonmetabolismandcellularregulationAtaveryabstractlevel,acellcanbedividedintotwogeneralsub-networks,aregulatorynetwork(informationflow)andametabolicnetwork(massflow).ModularModelingConcept7VirtualBiologicalLaboratory1.GeneralreflectionsonmetabolismandcellularregulationForasystem-wideunderstandinganddescriptionofcellularfunction,theserelationsbetweenmetabolismandregulationimplytwomajorconsequences:Firstly,duetotheirprominentroleinbringingaboutthesystems’behaviour,cellularregulationhastobedescribedinamorecoherent(anddetailed)waythanin”traditional”approachestomathematicalmodeling.Secondly,moreattentionhastobegiventoasignal-orientedviewofthesesystems,whichuntilnowhavemainlybeenconsideredfromamass-floworientedpointofview.ModularModelingConcept8VirtualBiologicalLaboratory1.Generalreflectionsonmetabolismandcellularregulation一般的在新陳代謝和細胞調控反映Ascellularregulationisestablishedbyespeciallycomplexgeneandproteinnetworks,acloserlookattheoverallstructureofcellularregulationmayhelptodealwiththiskindofcomplexity.Inthisrespect,oneimportantfeatureoftheregulatorynetworkisitshierarchicalstructure.分級結構ModularModelingConcept9VirtualBiologicalLaboratoryModularModelingConcept1.GeneralreflectionsonmetabolismandcellularregulationForthesystem-widedescriptionofacell,capturingtheseconstitutive基本的principlesinthemodelingprocesshasfirstofallthenegativeconsequenceofresultingindetailedandthusseemingly表面上似乎morecomplexmathematicalmodels.Thisiscompensated不常forbyseveraladvantagesasthedetaileddescriptionenables:(i)toconsidersystem-wide全系統(tǒng)的coupling耦合ofcellularregulationandhencetodescribetheinterplay相互影響ofglobalandlocalcontrol.(ii)tointegrate整合knowledgeonwell-characterizedgeneralcomponentsinordertogreatlyfacilitate幫助parameterdeterminationforspecialsubsystems子系統(tǒng).(iii)

toexploit開發(fā)hierarchicalnetwork分級網(wǎng)絡structuresformodelreduction.10VirtualBiologicalLaboratoryModularModelingConcept2.Identificationandrepresentationoffunctionalunits功能單位Asweaimatintegratingcellularmass-andsignalprocessingfunctions,eachofthesefunctionalunitshastobecomposedofapartofthemetabolicnetworkandacorresponding相應的partoftheregulatorynetwork.Forthisdemarcation劃分,weuseapreliminary初步的setofthreebiologicallymotivatedcriteria動機標準.Tobe(relatively)self-contained獨立的,themoduleshave:

(i)toperform執(zhí)行acommonphysiologicaltasksuchasrepresentalinearpathwayforaminoacidsynthesis.(ii)tobecontrolledatthegeneticlevelbycommonregulatorsi.e.identical同一的transcriptionfactors/theorganizationinoneoperon.(iii)

topossess擁有acommoninformationprocessing(signaltransduction)network.Essentialfeature基本特征isthecombinationofclassicalconceptsintheanalysisofmetabolicsystemswithasignal-oriented面向信號perspective觀點,透視圖tocellularregulation.11VirtualBiologicalLaboratorye.g.12VirtualBiologicalLaboratoryModularModelingConcept2.IdentificationandrepresentationoffunctionalunitsAtthemostfundamentallevel,afinite有限的anddisjunct分離的setof”elementarymodelingobjects”hasbeendefined.13VirtualBiologicalLaboratoryModularModelingConcept2.IdentificationandrepresentationoffunctionalunitsPropertiesofelementarymodelingobjects:(i)Theyhavestructuralpropertiesrepresentingthenumberandtypesofinputsandoutputs.Asimplesubmodelforanenzymatic酶的reaction,forinstance,needsatleasttwoinputs/outputsconnectedwithmassflowofsubstrate/productandonecontrolsignalforenzymeconcentration.(ii)Themodelingobjectsareassignedbehaviouralproperties行為道具,i.e.mathematicalequationsdescribingthedynamicbehaviour.(iii)Furthermore,eachmodelingobjectisassignedaspecificsymbolicrepresentation.象征符號14VirtualBiologicalLaboratoryModularModelingConcept2.IdentificationandrepresentationoffunctionalunitsElementarymodelingobjectscansubsequently隨后beinterconnected聯(lián)系的toformhigheraggregatedstructures.15ModularModelingConceptSummaryThemodularmodelingapproachenablesonetoprogressivelyobtainaholisticdescriptionofmorecomplexfunctionalunits.Theorganizationofthesemodelingobjectsinanobject-orientedclasshierarchyalsolaysthebasisforcomputer-aidedmodeldevelopment.VirtualBiologicalLaboratory16VirtualBiologicalLaboratoryVirtualBiologicalLaboratory(VBL):OutlinePurpose:toenablecomputerexperimentswithcellularsystemsinanalogytoexperimentscarriedoutwithrealbiologicalsystemsinthelaboratory.Application:quantitativeandqualitativeanalysisofoverallbehaviour,systematicdesignoffunctionalunitsbygeneticmodificationsandthesystematicplanningofreallaboratoryexperiments.Structure:integratingmathematicalmodelswithasound健全的biologicalbackgroundandmethodsfordatastorage數(shù)據(jù)儲存,computer-aidedmodeling,simulationandmodelanalysisinasoftwaretool.Accordingly,thedevelopmentofsuchatoolrequirestheclosecooperationofbiologists,informationscientistsandsystemscientists.17amaximalconvergenceof”modelworld”and”realworld”VirtualBiologicalLaboratory18Theprocessmodelingtool:PROMOT,originallydesignedforapplicationinchemicalengineering.Thesimulationenvironment:DIVA,forthenumericalanalysisoftheresultingmodels.PROMOT

distinguishes

structural,behaviouralandobject-orientedmodeling.

VirtualBiologicalLaboratory19Duringstructuralmodeling,modulesandtheirinterfaces,thesocalledterminals,areidentifiedaccordingtothebiologicalmodelingconceptandaggregated聚集inanaggregationhierarchyofmodules.Oneverylevelofthishierarchythemodulesarelinkedtogetherusingtheirterminals.Theselinksrepresenttheexchangeofmaterial,momentum動量,energyorinformationbetweenthemodules.

Modulescontainbehaviouralmodelingentities實體,i.e.variablesandequations.Theyformadifferentialalgebraic微分方程equationsystem(DAE),thatisusedduringthesimulation.

PROMOTnotonlyallowsforthedevelopmentofseparatemodelsbut,italsoenablestheimplementationanduseofflexible,object-orientedknowledgebasescontainingreusablemodelingentities.Thestructuralandbehaviouralmodelingentitiesarerepresentedasmodelingclasses.Userscannotonlyaggregatemodelingentitieswhicharealreadycontainedintheknowledgebasebuttheyarealsoabletoextendmodelingclassesbyaspecialsubclass(e.g.touseaspecialenzymekinetic)withoutre-implementingthecommonparts.VirtualBiologicalLaboratory20e.g.VirtualBiologicalLaboratory21Usingknowledgebases,modelformulationmeanstheselectionandlinkingofpre-definedmodelingobjectsviatheGUIandparametrizingtheresultingmodel.

Usingflexibleandseparatelytestedmodulesitshouldbepossibletobuildupverylargeandcomplexcellularmodelsinasimilarway,e.g.amodelofawholecell.(unliketheE-Cell)MathematicalmodelsgeneratedusingPROMOTcanbeanalyzedwithinthesimulationenvironmentDIVAThissimulationtoolhasbeendesignedespeciallyfordealingwithlarge-scaledynamical(differential-algebraic)systems,whichariseinchemicalprocessengineering,butalsointhemathematicalmodelingofcomplexcellularnetworks.ModelsinDIVAarehandledbysparse-matrixnumericswhichmakesthesimulatorcapabletoworkonmodelswithupto5000differentialequations.InsideDIVAmanydifferentnumericalcomputationscanbeperformedbasedonthesamemodel.VirtualBiologicalLaboratory22Therearecurrentlyfourmethodsforcellularmodels:(i)Dynamicsimulationofthemodelwithdifferentintegrationalgorithms集成算法;(ii)Sensitivityanalysisforparameterswithrespecttoexperimentaldata;(iii)Parameteridentificationaccordingtoexperimentaldata;(iv)Model-basedexperimentaldesign.Thevisualization形象化andpost-processing后處理ofthesimulationresultsaredonewithinthestandardnumericsoftwareMATLAB.ForaConclusionThecombinationofPROMOTandDIVAiswellsuitedtoformthecoreofthe”electronicinfrastructure”ofaVBL.VirtualBiologicalLaboratory23EXAMPLE1:CataboliterepressioninE.coli

Lactosetransportandmetabolism:Theregulatoryproteinsinvolvedinglucose-lactosediauxieinE.coliinfluencetheexpressionofthelactosemetabolizingenzymes.Thelactoserepressor,LacI,isabletobindtoacontrolsequenceinfrontofthelacoperonintheabsenceoflactose,therebyinhibitingtranscriptionfromlacZp.Thisrepressionisrelievedinthepresenceofallolactose,thenaturalmolecularinducerofthelacoperon.Globalsignaltransduction:AdditionalcontrolisexertedbytheCrpprotein.Thisproteinisactiveintheregulationofanumberofoperons,mostinvolvedincarbohydrateuptake.TheCrpproteinisabletoformacomplexwithcAMP,thatactsasatranscriptionalactivatorforthelacoperonaswellasfortheothermembersofthecrpmodulon.TheconcentrationofthealarmonecAMPinsidethecellisregulatedbycomplexmechanisms.VirtualBiologicalLaboratory24Themodelshowsahierarchicalstructure:Thepathwaysforglucoseandlactoseareunderthecontrolofasuperimposedsignaltransductionpathway.25AmathematicalmodelCataboliterepressioninE.coli:

SimulationandexperimentalresultsforE.coliK-12wildtype.26Tosummarizetheresultsofthismodel:(i)themodelquantitativelydescribesexperimentalresultsobtainedwithanumberofmutantstrains;(ii)themodelallowsthepredictionofthetimecourseofnotyetmeasurablevariableslikecAMP;(iii)themodelcanbeusedasabasisforfurtheranalysis.Itisnowusedtotesthypothesisesaboutregulatoryphenomenainfluencingthegrowthofsomemutantstrains.VirtualBiologicalLaboratory27G1checkpointG1G2G2checkpointMcheckpointMSControl

systemEXAMPLE2:CellcycleregulationinBuddingyeastG1checkpointG028VirtualBiologicalLaboratory2930Tosummarizetheresultsofthismodel:(i)biologicalknowledgeontheregulatorynetworkunderconsiderationissufficienttoexplaintheobservedbehaviour;(ii)theseeminglycomplexbehaviourresultsfromtheinterplayofregulatorycircuits,whichhavetobeviewedinaquantitativewaytogetaclueontheentirenetwork’sfunction;(iii)mathematicalmodelinggiveshintsthatthisnetworkconstitutesarelativelyrobustregulatorymodule.VirtualBiologicalLaboratory31VirtualBiologicalLaboratoryConclusion(i)Findingconceptstodealwiththecomplexityoflivingsystemsrepresentsthemajorchallengeonthewaytoasystem-levelunderstandingofcellsandorganisms;(ii)Itessentiallyreliesuponthemodularmathematicalmodelingoftheoverallbehaviourofcellularfunctionalunits.Thedecomposition分解ofcellsintosuchunitsisoriented定向atthemodularbiomolecularstructureofcellularsystems;(iii)Thisdemarcation劃分alsorepresentsthemostcrucial重要的aspectofthemodelingconceptasmainlyheuristiccriteria啟發(fā)式標準areappliedatthemoment.32ComputationalCellBiologyTheStochasticApproachOutlineAlthoughtheneedforcomputationalmodelingandsimulationincellbiologyisnowwidelyappreciated,theconventionalapproach

常規(guī)方法ofrepresentingbiochemicalreactionsbycontinuous,deterministicrateequations,cannoteasilybeappliedtointracellularprocessesbasedonmulti-proteincomplexes,orthosethatdependontheindividualbehaviourofsmallnumbersofmolecules.

Stochasticmodeling隨機模型hasemerged出現(xiàn)asanalternative,andphysicallymorerealistic,approachtophenomenasuchasintracellularsignalingandgeneexpression.HereweintroducetheSTOCHSIMalgorithm算法andprovideacomparisonofwithanotherpopularstochasticapproachdevelopedbyGillespie.33Chemicalsignalingcascadeisthemostfundamentalinformationprocessingunitinbiologicalsystems.Photoreceptor Vertebratephotoreceptorconvertsexternalenergy(lightquanta)intoachangeinconcentrationintracellularsignalingproteins(Ca2+??Vesicalrelease??).Chemotaxis

E.colichemotaxisnetworkconvertsexternalchangeofstimulusintoachangeinconcentrationofsignalingproteinCheYp,whichcontrolscellmotilebehavior.UseE.colichemotaxisnetworkasaprototypetoexplorethegeneralinformationprocessingprincipleinbiologicalsystems.InformationProcessinginBiologicalSystemsComputationalCellBiologyTheStochasticApproach34Background:IntroductiontoChemotaxisinE.coliFluorescentlylabeledE.coliDimensions: Bodysize:1μminlength 0.4μminradius Flagellum:10μmlong

45nmindiameterPhysicalconstants: Cellspeed:20-30μm/sec Meanruntime:1sec Meantumbletime:0.1secOneofthekeyfeaturesofE.colichemotaxisnetwork:Adaptation.ComputationalCellBiologyTheStochasticApproach35Adaptationistherestorationofpre-stimulusbehaviorfollowingachangeinexternalstimulus.Fig.1Adaptationtoaddition/removalofstimuli.Attractant:30μMMeAsp.Repellent:100μMNiCl2YFP/CFP~[CheYp]Whyresponsevary?Fig.2TheleftmostcurveistherelationbetweentheadaptationtimeofE.coliandstep-wisechangeof[MeAsp](1e-2~1e+4μM).ComputationalCellBiologyTheStochasticApproach36SignalTransductionPathwayMotorResponseStimulusFlagellarResponse(?)MotionComputationalCellBiologyTheStochasticApproach37SignalTransductionNetworkComputationalCellBiologyTheStochasticApproach38WithStochsim,ageneralplatformforsimulatingreactionsusingastochasticmethod,tosimulatereactions.Reactionshaveaprobabilitiesptooccur.Unimolecularreaction單分子反應n:Numberofmoleculesfromreactionsystemn0:Numberofpseudo-moleculesNA:Avogadroconstantp:Probabilityforareactiontohappen

Δt:SimulationtimestepV:SimulationvolumeBimolecularreaction雙分子反應ComputationalCellBiologyTheStochasticApproach39ParametersValuesforReceptorActivationEn:methylatedreceptorcomplex;activationprobability,P1(n)Ena:ligand-boundreceptorcomplex;activationprobability,P2(n)En*:activeformofEn

En*a:activeformofEnaActivationProbabilitiesnP1(n)P2(n)00.020.0029110.10.0220.3120.130.940.34540.9970.98ComputationalCellBiologyTheStochasticApproach40ParametersValuesforProteinsReactionVolume:1.41x10-15literRateconstantsgivenabove.InitialNumbersofMoleculesMoleculeNumberConcentration(μM)Y1568418Yp00R2500.29E6276-B19282.27Bp00ComputationalCellBiologyTheStochasticApproach41ParameterValueforMotorResponse運動反應ParametersvaluesParameterValueLiteraturevalueKR5.9μM3~12μMKT1.7μM1~7μMKf(0)1.0E-5μM3.35E-4μMKb(0)1.5E+4μM2.2E+4μMμ2.211.61ComputationalCellBiologyTheStochasticApproach42Outputofthechemotaxisnetworkisthemotorstatewhichdeterminesthemotilebehavior.

Rrun TtumbleRun

Tumble

tt+Δtv=20μm/sDr=0.06205s-1

αγ=4μ=-4.6β=18.32FromMotorResponsetoCellMotion細胞運動ComputationalCellBiologyTheStochasticApproach43ModelValidation:

StepResponseandAdaptationTime適應時間

E.colimotorresponseto10μMstep-wisechangeofAspatt=5sec.ThemotorCCWbiasisplottedasafunctionoftime. Adaptationtimeundervariousstep-wisechangeof[Asp]from0to0.1,1,10,100,respectively.AdaptationtimeisdefinedasthemotorCCWbiasreturnstoitspre-stimulusvalue.(1000isrunning)ComputationalCellBiologyTheStochasticApproach44Impulseresponseofwild-typecell,impulseduration0.2sec.Left:ExperimentalresultfromStevenM.Blocketall,Cell(1982)Right:Simulationresult(datasmoothed)ModelValidation:

ImpulseResponseofWild-typeCell脈沖響應ComputationalCellBiologyTheStochasticApproach45ModelValidation:校驗

Running&TumblingIntervals翻滾的間隔ThedistributionofmotorCCWandCWevents.Left:korobkovaetal.,2004Right:Simulationresults.(Red:CCWevents;Black:CWevents)ComputationalCellBiologyTheStochasticApproach46Comparison:(i)TheGillespiealgorithmmakestimestepsofvariablelength,basedonthereactionrateconstants反應速率常數(shù)andpopulationsize群體大小ofeachchemicalspecies;(ii)TheGillespiecannoteasilyhandlethereactionsofmultistatemolecules;(iii)TheSTOCHSIMislikelytobeslowerthantheGillespiealgorithmincalculatingtheeventualoutcomeofasmallsetofsimplebiochemicalreactions,especiallywhenthenumbersofmoleculesislargeifwithoutthereactionsofmultistatemolecules;(iv)Spatialstructures空間結構canbeincorporatedinto成為一部分theSTOCHSIMframeworkwithrelativeease,asonecandirectlydefinethespatiallocation空間位置ofindividualmolecules—somethingthatwouldbedifficulttodowiththeGillespiealgorithm.47AWhole-CellComputationalModelOutline

Awhole-cellcomputationalmodelofthelifecycleofthehumanpathogen病原體

Mycoplasmagenitalium生殖支原體thatincludesallofitsmolecularcomponentsandtheirinteractions.Anintegrativeapproach積分方法tomodelingthatcombinesdiversemathematicsenabledthesimultaneousinclusion同時包含offundamentallydifferentcellularprocessesandexperimentalmeasurements.Thewhole-cellmodelaccountsforallannotated有注釋genefunctionsandwasvalidated確認againstabroadrangeofdata.Themodelprovidesinsightsintomanypreviouslyunobserved

未被遵守的cellularb

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論