




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆河北省五個(gè)一聯(lián)盟高三數(shù)學(xué)試題3月聯(lián)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若關(guān)于的不等式有正整數(shù)解,則實(shí)數(shù)的最小值為()A. B. C. D.2.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實(shí)數(shù)等于()A. B.1 C. D.23.已知函數(shù),若函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知點(diǎn)、.若點(diǎn)在函數(shù)的圖象上,則使得的面積為的點(diǎn)的個(gè)數(shù)為()A. B. C. D.5.國(guó)家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國(guó)物流與采購(gòu)聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國(guó)制造業(yè)采購(gòu)經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是()A.12個(gè)月的PMI值不低于50%的頻率為B.12個(gè)月的PMI值的平均值低于50%C.12個(gè)月的PMI值的眾數(shù)為49.4%D.12個(gè)月的PMI值的中位數(shù)為50.3%6.定義在上函數(shù)滿足,且對(duì)任意的不相等的實(shí)數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實(shí)數(shù)m的取值范圍是()A. B. C. D.7.已知正方體的棱長(zhǎng)為,,,分別是棱,,的中點(diǎn),給出下列四個(gè)命題:①;②直線與直線所成角為;③過(guò),,三點(diǎn)的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個(gè)數(shù)為()A. B. C. D.8.集合,,則()A. B. C. D.9.設(shè)過(guò)定點(diǎn)的直線與橢圓:交于不同的兩點(diǎn),,若原點(diǎn)在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.10.二項(xiàng)式展開(kāi)式中,項(xiàng)的系數(shù)為()A. B. C. D.11.設(shè)是等差數(shù)列,且公差不為零,其前項(xiàng)和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,2二、填空題:本題共4小題,每小題5分,共20分。13.一次考試后,某班全班50個(gè)人數(shù)學(xué)成績(jī)的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來(lái)的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_________.14.實(shí)數(shù),滿足,如果目標(biāo)函數(shù)的最小值為,則的最小值為_(kāi)______.15.若復(fù)數(shù)滿足,其中為虛數(shù)單位,則的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為_(kāi)____.16.已知是同一球面上的四個(gè)點(diǎn),其中平面,是正三角形,,則該球的表面積為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知不等式對(duì)于任意的恒成立.(1)求實(shí)數(shù)m的取值范圍;(2)若m的最大值為M,且正實(shí)數(shù)a,b,c滿足.求證.18.(12分)已知函數(shù)有兩個(gè)零點(diǎn).(1)求的取值范圍;(2)是否存在實(shí)數(shù),對(duì)于符合題意的任意,當(dāng)時(shí)均有?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.20.(12分)如圖,四棱錐中,底面是菱形,對(duì)角線交于點(diǎn)為棱的中點(diǎn),.求證:(1)平面;(2)平面平面.21.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點(diǎn).(1)求證:平面;(2)若,求二面角的余弦值大小.22.(10分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
根據(jù)題意可將轉(zhuǎn)化為,令,利用導(dǎo)數(shù),判斷其單調(diào)性即可得到實(shí)數(shù)的最小值.【詳解】因?yàn)椴坏仁接姓麛?shù)解,所以,于是轉(zhuǎn)化為,顯然不是不等式的解,當(dāng)時(shí),,所以可變形為.令,則,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,所以當(dāng)時(shí),,故,解得.故選:A.【點(diǎn)睛】本題主要考查不等式能成立問(wèn)題的解法,涉及到對(duì)數(shù)函數(shù)的單調(diào)性的應(yīng)用,構(gòu)造函數(shù)法的應(yīng)用,導(dǎo)數(shù)的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力,屬于中檔題.2.B【解析】
先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對(duì)應(yīng)的的值即可.【詳解】因?yàn)椋?,又因?yàn)槭羌兲摂?shù),所以,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.3.B【解析】
根據(jù)所給函數(shù)解析式,畫出函數(shù)圖像.結(jié)合圖像,分段討論函數(shù)的零點(diǎn)情況:易知為的一個(gè)零點(diǎn);對(duì)于當(dāng)時(shí),由代入解析式解方程可求得零點(diǎn),結(jié)合即可求得的范圍;對(duì)于當(dāng)時(shí),結(jié)合導(dǎo)函數(shù),結(jié)合導(dǎo)數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點(diǎn),即.由圖像可知,,所以是的一個(gè)零點(diǎn),當(dāng)時(shí),,若,則,即,所以,解得;當(dāng)時(shí),,則,且若在時(shí)有一個(gè)零點(diǎn),則,綜上可得,故選:B.【點(diǎn)睛】本題考查了函數(shù)圖像的畫法,函數(shù)零點(diǎn)定義及應(yīng)用,根據(jù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,導(dǎo)數(shù)的幾何意義應(yīng)用,屬于中檔題.4.C【解析】
設(shè)出點(diǎn)的坐標(biāo),以為底結(jié)合的面積計(jì)算出點(diǎn)到直線的距離,利用點(diǎn)到直線的距離公式可得出關(guān)于的方程,求出方程的解,即可得出結(jié)論.【詳解】設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,即,設(shè)點(diǎn)到直線的距離為,則,解得,另一方面,由點(diǎn)到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點(diǎn)共有三個(gè).故選:C.【點(diǎn)睛】本題考查三角形面積的計(jì)算,涉及點(diǎn)到直線的距離公式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.5.D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計(jì)、眾數(shù)、中位數(shù),從而得到答案.【詳解】對(duì)A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個(gè),所以12個(gè)月的PMI值不低于50%的頻率為,故A正確;對(duì)B,由圖可以看出,PMI值的平均值低于50%,故B正確;對(duì)C,12個(gè)月的PMI值的眾數(shù)為49.4%,故C正確,;對(duì)D,12個(gè)月的PMI值的中位數(shù)為49.6%,故D錯(cuò)誤故選:D.【點(diǎn)睛】本題考查頻率、平均值的估計(jì)、眾數(shù)、中位數(shù)計(jì)算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.6.B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡(jiǎn)題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計(jì)算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對(duì)應(yīng)于恒成立,即即對(duì)恒成立即對(duì)恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點(diǎn)睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計(jì)算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計(jì)算最值,即可得出答案.7.C【解析】
畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個(gè)命題的真假即可.【詳解】如圖;連接相關(guān)點(diǎn)的線段,為的中點(diǎn),連接,因?yàn)槭侵悬c(diǎn),可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過(guò),,三點(diǎn)的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點(diǎn),所以,而,.所以三棱錐的體積為,④正確;故選:.【點(diǎn)睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.8.A【解析】
計(jì)算,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.9.D【解析】
設(shè)直線:,,,由原點(diǎn)在以為直徑的圓的外部,可得,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理,即可求得答案.【詳解】顯然直線不滿足條件,故可設(shè)直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.【點(diǎn)睛】本題解題關(guān)鍵是掌握橢圓的基礎(chǔ)知識(shí)和圓錐曲線與直線交點(diǎn)問(wèn)題時(shí),通常用直線和圓錐曲線聯(lián)立方程組,通過(guò)韋達(dá)定理建立起目標(biāo)的關(guān)系式,考查了分析能力和計(jì)算能力,屬于中檔題.10.D【解析】
寫出二項(xiàng)式的通項(xiàng)公式,再分析的系數(shù)求解即可.【詳解】二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,得,故項(xiàng)的系數(shù)為.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的運(yùn)算,屬于基礎(chǔ)題.11.A【解析】
根據(jù)等差數(shù)列的前項(xiàng)和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項(xiàng)和為,充分性:,則對(duì)任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時(shí),,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對(duì)任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時(shí),,此時(shí),,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項(xiàng)和公式是解決本題的關(guān)鍵,屬于中等題.12.C【解析】
先求出集合U,再根據(jù)補(bǔ)集的定義求出結(jié)果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點(diǎn)睛】本題考查集合補(bǔ)集的運(yùn)算,求解的關(guān)鍵是正確求出集合U和熟悉補(bǔ)集的定義,屬于簡(jiǎn)單題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據(jù)均值的定義計(jì)算.【詳解】由題意,∴.故答案為:1.【點(diǎn)睛】本題考查均值的概念,屬于基礎(chǔ)題.14.【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的最小值為,確定出的值,進(jìn)而確定出C點(diǎn)坐標(biāo),結(jié)合目標(biāo)函數(shù)幾何意義,從而求得結(jié)果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內(nèi),由得可知,直線的截距最大時(shí),取得最小值,此時(shí)直線為,作出直線,交于A點(diǎn),由圖象可知,目標(biāo)函數(shù)在該點(diǎn)取得最小值,所以直線也過(guò)A點(diǎn),由,得,代入,得,所以點(diǎn)C的坐標(biāo)為.等價(jià)于點(diǎn)與原點(diǎn)連線的斜率,所以當(dāng)點(diǎn)為點(diǎn)C時(shí),取得最小值,最小值為,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)線性規(guī)劃的問(wèn)題,在解題的過(guò)程中,注意正確畫出約束條件對(duì)應(yīng)的可行域,根據(jù)最值求出參數(shù),結(jié)合分式型目標(biāo)函數(shù)的意義求得最優(yōu)解,屬于中檔題目.15.【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出得答案.【詳解】,,則,的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為,故答案為【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.16.【解析】
求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點(diǎn)睛】本小題主要考查幾何體外接球表面積的計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)證明見(jiàn)解析【解析】
(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數(shù),且時(shí)為增函數(shù),由此可得出答案;(2)由(1)知,,即,結(jié)合“1”的代換,利用基本不等式即可證明結(jié)論.【詳解】解:(1)法一:(當(dāng)且僅當(dāng)時(shí)取等號(hào)),又(當(dāng)且僅當(dāng)時(shí)取等號(hào)),所以(當(dāng)且僅當(dāng)時(shí)取等號(hào)),由題意得,則,解得,故的取值范圍是;法二:因?yàn)閷?duì)于任意恒有成立,即,令,易知是偶函數(shù),且時(shí)為增函數(shù),所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【點(diǎn)睛】本題主要考查絕對(duì)值不等式的恒成立問(wèn)題,考查基本不等式的應(yīng)用,屬于中檔題.18.(1);(2).【解析】
(1)對(duì)求導(dǎo),對(duì)參數(shù)進(jìn)行分類討論,根據(jù)函數(shù)單調(diào)性即可求得.(2)先根據(jù),得,再根據(jù)零點(diǎn)解得,轉(zhuǎn)化不等式得,令,化簡(jiǎn)得,因此,,最后根據(jù)導(dǎo)數(shù)研究對(duì)應(yīng)函數(shù)單調(diào)性,確定對(duì)應(yīng)函數(shù)最值,即得取值集合.【詳解】(1),當(dāng)時(shí),對(duì)恒成立,與題意不符,當(dāng),,∴時(shí),即函數(shù)在單調(diào)遞增,在單調(diào)遞減,∵和時(shí)均有,∴,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,,且,∴,故,又∵,令,則,且恒成立,令,而,∴時(shí),時(shí),∴,令,若,則時(shí),,即函數(shù)在單調(diào)遞減,∴,與不符;若,則時(shí),,即函數(shù)在單調(diào)遞減,∴,與式不符;若,解得,此時(shí)恒成立,,即函數(shù)在單調(diào)遞增,又,∴時(shí),;時(shí),符合式,綜上,存在唯一實(shí)數(shù)符合題意.【點(diǎn)睛】利用導(dǎo)數(shù)研究不等式恒成立或存在型問(wèn)題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.19.(1)或;(2).【解析】
(1)利用絕對(duì)值的幾何意義,將不等式,轉(zhuǎn)化為不等式或或求解.(2)根據(jù)-2在R上恒成立,由絕對(duì)值三角不等式求得的最小值即可.【詳解】(1)原不等式等價(jià)于或或,解得:或,∴不等式的解集為或.(2)因?yàn)?2在R上恒成立,而,所以,解得,所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查絕對(duì)值不等式的解法和不等式恒成立問(wèn)題,還考查了運(yùn)算求解的能力,屬于中檔題.20.(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.【解析】
(1)連結(jié)根據(jù)中位線的性質(zhì)證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結(jié)是菱形對(duì)角線的交點(diǎn),為的中點(diǎn),是棱的中點(diǎn),平面平面平面解:在菱形中,且為的中點(diǎn),,,平面平面,平面平面.【點(diǎn)睛】本題主要考查了線面平行與垂直的判定,屬于基礎(chǔ)題.21.(1)見(jiàn)解析;(2)【解析】
(1)設(shè)中點(diǎn)為,連接、,首先通過(guò)條件得出,加,可得,進(jìn)而可得平面,再加上平面,可得平面平面,則平面;(2)設(shè)中點(diǎn)為,連接、,可得平面,加上平面,則可如圖建立直角坐標(biāo)系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設(shè)中點(diǎn)為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內(nèi)二相交直線,平面平面,平面DMN,平面;(2)設(shè)中點(diǎn)為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設(shè),則在中,由余弦定理,得:又,,,,,為中點(diǎn),,建立直角坐標(biāo)系(如圖),則,,,.,,設(shè)平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點(diǎn)睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力和空間想象能力,是中檔題.22.(Ⅰ)極小值,極大值;(Ⅱ)或【
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 院校講師勞動(dòng)合同書
- 結(jié)腸癌的健康教育
- 腎移植患者的個(gè)案護(hù)理
- 租賃服務(wù)合同范文
- 技術(shù)服務(wù)采購(gòu)合同
- 行業(yè)標(biāo)桿勞務(wù)合同集錦
- 標(biāo)準(zhǔn)個(gè)人汽車租賃合同模板
- 特種設(shè)備維修與保養(yǎng)合同標(biāo)準(zhǔn)文本
- 品牌宣傳合作合同
- 辦公場(chǎng)地出租合同模板
- 非免疫規(guī)劃疫苗接種方案(2023年版)
- 電工證考試題庫(kù)app低壓電工證考試
- 居民自建樁安裝告知書回執(zhí)
- 攔沙壩施工工藝
- 社區(qū)矯正對(duì)象書面保護(hù)申請(qǐng)書
- 火龍罐技術(shù)課件
- 中國(guó)人工智能系列白皮書 - 大模型技術(shù)(2023 版)
- 機(jī)器人技術(shù)概述-(課堂)課件
- 車聯(lián)網(wǎng)技術(shù)與應(yīng)用PPT完整全套教學(xué)課件
- 城鎮(zhèn)燃?xì)鈱I(yè)知識(shí)培訓(xùn)課件
- 2023年清華大學(xué)考博英語(yǔ)真題及答案詳解
評(píng)論
0/150
提交評(píng)論