




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江諸暨中學(xué)2025屆高三教學(xué)情況調(diào)研數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長為1,圖中復(fù)平面內(nèi)點(diǎn)表示復(fù)數(shù),則表示復(fù)數(shù)的點(diǎn)是()A.E B.F C.G D.H2.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點(diǎn)為陰數(shù).若從這10個數(shù)中任取3個數(shù),則這3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.3.某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多4.等比數(shù)列中,,則與的等比中項是()A.±4 B.4 C. D.5.已知平面向量,滿足,,且,則()A.3 B. C. D.56.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.7.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.328.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣859.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.18010.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.11.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)12.已知,則的大小關(guān)系為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,只有第5項的二項式系數(shù)最大,則該二項展開式中的常數(shù)項等于_____.14.已知,則_____15.在平面直角坐標(biāo)系中,已知點(diǎn),,若圓上有且僅有一對點(diǎn),使得的面積是的面積的2倍,則的值為_______.16.已知等差數(shù)列滿足,,則的值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,設(shè)函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.18.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點(diǎn),與相交于點(diǎn).(1)求證:平面;(2)求直線與平面所成的角的正弦值.19.(12分)如圖,點(diǎn)為圓:上一動點(diǎn),過點(diǎn)分別作軸,軸的垂線,垂足分別為,,連接延長至點(diǎn),使得,點(diǎn)的軌跡記為曲線.(1)求曲線的方程;(2)若點(diǎn),分別位于軸與軸的正半軸上,直線與曲線相交于,兩點(diǎn),且,試問在曲線上是否存在點(diǎn),使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.20.(12分)已知分別是內(nèi)角的對邊,滿足(1)求內(nèi)角的大?。?)已知,設(shè)點(diǎn)是外一點(diǎn),且,求平面四邊形面積的最大值.21.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點(diǎn),.(1)求證:平面;(2)求證:.22.(10分)已知在中,角、、的對邊分別為,,,,.(1)若,求的值;(2)若,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由于在復(fù)平面內(nèi)點(diǎn)的坐標(biāo)為,所以,然后將代入化簡后可找到其對應(yīng)的點(diǎn).【詳解】由,所以,對應(yīng)點(diǎn).故選:C【點(diǎn)睛】此題考查的是復(fù)數(shù)與復(fù)平面內(nèi)點(diǎn)的對就關(guān)系,復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題.2.C【解析】
先根據(jù)組合數(shù)計算出所有的情況數(shù),再根據(jù)“3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點(diǎn)睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時,可考慮用排列數(shù)、組合數(shù)去計算.3.D【解析】
根據(jù)兩個圖形的數(shù)據(jù)進(jìn)行觀察比較,即可判斷各選項的真假.【詳解】在A中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的,所以是正確的;在C中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運(yùn)營崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.故選:D.【點(diǎn)睛】本題主要考查了命題的真假判定,以及統(tǒng)計圖表中餅狀圖和條形圖的性質(zhì)等基礎(chǔ)知識的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4.A【解析】
利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項是.
由等比數(shù)列的性質(zhì)可得,.
∴與的等比中項
故選A.【點(diǎn)睛】本題考查了等比中項的求法,屬于基礎(chǔ)題.5.B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點(diǎn)睛】考查向量的數(shù)量積及向量模的運(yùn)算,是基礎(chǔ)題.6.B【解析】
首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:【點(diǎn)睛】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.7.A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.8.D【解析】
由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.9.A【解析】
因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,,.故選:A.【點(diǎn)睛】本題主要考查了求等差數(shù)列前項和,解題關(guān)鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.10.B【解析】
根據(jù)計算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點(diǎn)睛】本題考查了程序框圖的簡單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.11.A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點(diǎn)一側(cè)的區(qū)間(對奇(偶)函數(shù)而言)或某一周期內(nèi)(對周期函數(shù)而言)考慮,然后推廣到整個定義域上.12.D【解析】
分析:由題意結(jié)合對數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點(diǎn)睛:對于指數(shù)冪的大小的比較,我們通常都是運(yùn)用指數(shù)函數(shù)的單調(diào)性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進(jìn)行比較.這就必須掌握一些特殊方法.在進(jìn)行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進(jìn)行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準(zhǔn)確.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
由題意可得,再利用二項展開式的通項公式,求得二項展開式常數(shù)項的值.【詳解】的二項展開式的中,只有第5項的二項式系數(shù)最大,,通項公式為,令,求得,可得二項展開式常數(shù)項等于,故答案為1.【點(diǎn)睛】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.14.【解析】
化簡得,利用周期即可求出答案.【詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.15.【解析】
寫出所在直線方程,求出圓心到直線的距離,結(jié)合題意可得關(guān)于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點(diǎn),有且僅有一對,可得點(diǎn)到的距離是點(diǎn)到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系以及點(diǎn)到直線的距離公式應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題.16.11【解析】
由等差數(shù)列的下標(biāo)和性質(zhì)可得,由即可求出公差,即可求解;【詳解】解:設(shè)等差數(shù)列的公差為,,又因為,解得故答案為:【點(diǎn)睛】本題考查等差數(shù)列的通項公式及等差數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析【解析】
(1)利用零點(diǎn)分段法,求出各段的取值范圍然后取并集可得結(jié)果.(2)利用絕對值三角不等式可得,然后使用柯西不等式可得結(jié)果.【詳解】(1)由,所以由當(dāng)時,則所以當(dāng)時,則當(dāng)時,則綜上所述:(2)由當(dāng)且僅當(dāng)時取等號所以由,所以所以令根據(jù)柯西不等式,則當(dāng)且僅當(dāng),即取等號由故,又則【點(diǎn)睛】本題考查使用零點(diǎn)分段法求解絕對值不等式以及柯西不等式的應(yīng)用,屬基礎(chǔ)題.18.(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,即可:(2)取中點(diǎn),連,以為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,分別求出與平面的法向量,再利用計算即可.【詳解】(1)∵底面為菱形,∵直棱柱平面.∵平面..平面;(2)如圖,取中點(diǎn),連,以為原點(diǎn),分別為軸建立如圖所示空間直角坐標(biāo)系:,點(diǎn),設(shè)平面的法向量為,,有,令,得又,設(shè)直線與平面所成的角為,所以故直線與平面所成的角的正弦值為.【點(diǎn)睛】本題考查線面垂直的證明以及向量法求線面角的正弦值,考查學(xué)生的運(yùn)算求解能力,本題解題關(guān)鍵是正確寫出點(diǎn)的坐標(biāo).19.(1)(2)不存在;詳見解析【解析】
(1)設(shè),,,通過,即為的中點(diǎn),轉(zhuǎn)化求解,點(diǎn)的軌跡的方程.(2)設(shè)直線的方程為,先根據(jù),可得,①,再根據(jù)韋達(dá)定理,點(diǎn)在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設(shè),,則,,由題意知,所以為中點(diǎn),由中點(diǎn)坐標(biāo)公式得,即,又點(diǎn)在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設(shè)直線的方程為,因為,故,即①,聯(lián)立,消去得:,設(shè),,,,,因為四邊形為平行四邊形,故,點(diǎn)在橢圓上,故,整理得②,將①代入②,得,該方程無解,故這樣的直線不存在.【點(diǎn)睛】本題考查點(diǎn)的軌跡方程的求法、滿足條件的點(diǎn)是否存在的判斷與直線方程的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.20.(1)(2)【解析】
(1)首先利用誘導(dǎo)公式及兩角和的余弦公式得到,再由同角三角三角的基本關(guān)系得到,即可求出角;(2)由(1)知,是正三角形,設(shè),由余弦定理可得:,則,得到,再利用輔助角公式化簡,最后由正弦函數(shù)的性質(zhì)求得最大值;【詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設(shè),由余弦定理得:,,,所以當(dāng)時有最大值【點(diǎn)睛】本題考查同角三角函數(shù)的基本關(guān)系,三角恒等變換公式的應(yīng)用,三角形面積公式的應(yīng)用,以及正弦函數(shù)的性質(zhì),屬于中檔題.21.(1)證明見解析(2)證明見解析【解析】
(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【詳解】(1)連,因為為平行四邊形,為其
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電子合同法律適用與實踐探討
- 2025橋梁建設(shè)施工合同
- 2025建筑施工機(jī)械租賃合同模板
- 2025寫字間租賃合同樣本
- 2025個體健身房器材特許經(jīng)營合同
- 2025商業(yè)大廈與裝修公司合作的合同
- 2025臨時建筑買賣合同模板
- 《2025機(jī)械設(shè)備租賃合同》
- 實習(xí)勞動合同方協(xié)議
- 風(fēng)險代理合同范本
- 【基于STM32單片機(jī)無線藍(lán)牙耳機(jī)設(shè)計5400字(論文)】
- 密碼應(yīng)用安全性評估
- 西班牙社會與文化智慧樹知到課后章節(jié)答案2023年下天津外國語大學(xué)
- 2021上海慢行交通規(guī)劃設(shè)計導(dǎo)則
- 低壓綜合配電箱二次配線工藝守則
- 浙江省紹興市2023年中考英語真題(附答案)
- 地下鐵道-中南大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 廢品站勞務(wù)合同范本
- 安全生產(chǎn)管理規(guī)章制度評審記錄
- 教科版五年級科學(xué)下冊全套測試卷
- 建設(shè)工程工程量清單及清單計價2013
評論
0/150
提交評論