




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆貴州省畢節(jié)市實(shí)驗(yàn)高級(jí)中學(xué)招生全國統(tǒng)一考試數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則()A. B. C. D.2.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}3.已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知角的終邊經(jīng)過點(diǎn),則A. B.C. D.5.若實(shí)數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.26.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時(shí),,則()A.2 B. C.1 D.7.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計(jì)),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個(gè) B.個(gè) C.個(gè) D.個(gè)8.等比數(shù)列中,,則與的等比中項(xiàng)是()A.±4 B.4 C. D.9.如圖,正方體中,,,,分別為棱、、、的中點(diǎn),則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線10.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.711.記為等差數(shù)列的前項(xiàng)和.若,,則()A.5 B.3 C.-12 D.-1312.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個(gè)結(jié)論:①曲線有四條對(duì)稱軸;②曲線上的點(diǎn)到原點(diǎn)的最大距離為;③曲線第一象限上任意一點(diǎn)作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結(jié)論的序號(hào)是()A.①② B.①③ C.①③④ D.①②④二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中的系數(shù)為,則_______.14.已知i為虛數(shù)單位,復(fù)數(shù),則=_______.15.的展開式中,的系數(shù)為____________.16.已知△ABC得三邊長成公比為2的等比數(shù)列,則其最大角的余弦值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時(shí),證明:.18.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:AQI空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染重度污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對(duì)應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為X元,求X的分布列;(ii)試問該企業(yè)7月、8月、9月這三個(gè)月因空氣質(zhì)量造成的經(jīng)濟(jì)損失總額的數(shù)學(xué)期望是否會(huì)超過2.88萬元?說明你的理由.19.(12分)已知函數(shù).(1)若是函數(shù)的極值點(diǎn),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),證明:20.(12分)已知函數(shù),,且.(1)當(dāng)時(shí),求函數(shù)的減區(qū)間;(2)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(3)若方程的兩個(gè)實(shí)數(shù)根是,試比較,與的大小,并說明理由.21.(12分)已知拋物線C:x24py(p為大于2的質(zhì)數(shù))的焦點(diǎn)為F,過點(diǎn)F且斜率為k(k0)的直線交C于A,B兩點(diǎn),線段AB的垂直平分線交y軸于點(diǎn)E,拋物線C在點(diǎn)A,B處的切線相交于點(diǎn)G.記四邊形AEBG的面積為S.(1)求點(diǎn)G的軌跡方程;(2)當(dāng)點(diǎn)G的橫坐標(biāo)為整數(shù)時(shí),S是否為整數(shù)?若是,請(qǐng)求出所有滿足條件的S的值;若不是,請(qǐng)說明理由.22.(10分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)設(shè),求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.2.D【解析】
解一元二次不等式化簡集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧?,故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.3.B【解析】
分別比較復(fù)數(shù)的實(shí)部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限.【詳解】因?yàn)闀r(shí),所以,,所以復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.4.D【解析】因?yàn)榻堑慕K邊經(jīng)過點(diǎn),所以,則,即.故選D.5.C【解析】
作出可行域,直線目標(biāo)函數(shù)對(duì)應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過點(diǎn)時(shí),取得最大值1.故選:C.【點(diǎn)睛】本題考查簡單的線性規(guī)劃問題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個(gè)封閉圖形.6.D【解析】
說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計(jì)算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點(diǎn)睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).7.C【解析】
計(jì)算球心連線形成的正四面體相對(duì)棱的距離為cm,得到最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,得到不等式,計(jì)算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個(gè)球兩兩相切,這樣,相鄰的四個(gè)球的球心連線構(gòu)成棱長為cm的正面體,易求正四面體相對(duì)棱的距離為cm,每裝兩個(gè)球稱為“一層”,這樣裝層球,則最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個(gè)球.故選:【點(diǎn)睛】本題考查了圓柱和球的綜合問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.8.A【解析】
利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項(xiàng)是.
由等比數(shù)列的性質(zhì)可得,.
∴與的等比中項(xiàng)
故選A.【點(diǎn)睛】本題考查了等比中項(xiàng)的求法,屬于基礎(chǔ)題.9.C【解析】
充分利用正方體的幾何特征,利用線面平行的判定定理,根據(jù)判斷A的正誤.根據(jù),判斷B的正誤.根據(jù)與相交,判斷C的正誤.根據(jù),判斷D的正誤.【詳解】在正方體中,因?yàn)?,所以平面,故A正確.因?yàn)?,所以,所以平面故B正確.因?yàn)?,所以平面,故D正確.因?yàn)榕c相交,所以與平面相交,故C錯(cuò)誤.故選:C【點(diǎn)睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.10.C【解析】
根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C【點(diǎn)睛】本題主要考查了程序框圖的計(jì)算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過程.11.B【解析】
由題得,,解得,,計(jì)算可得.【詳解】,,,,解得,,.故選:B【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,考查了學(xué)生運(yùn)算求解能力.12.C【解析】
①利用之間的代換判斷出對(duì)稱軸的條數(shù);②利用基本不等式求解出到原點(diǎn)的距離最大值;③將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對(duì)應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】①:當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;綜上可知:有四條對(duì)稱軸,故正確;②:因?yàn)?,所以,所以,所以,取等?hào)時(shí),所以最大距離為,故錯(cuò)誤;③:設(shè)任意一點(diǎn),所以圍成的矩形面積為,因?yàn)?,所以,所以,取等?hào)時(shí),所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因?yàn)閳A的面積為:,所以四葉草的面積小于,故正確.故選:C.【點(diǎn)睛】本題考查曲線與方程的綜合運(yùn)用,其中涉及到曲線的對(duì)稱性分析以及基本不等式的運(yùn)用,難度較難.分析方程所表示曲線的對(duì)稱性,可通過替換方程中去分析證明.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
首先求出的展開項(xiàng)中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【詳解】由題知,當(dāng)時(shí)有,解得.故答案為:.【點(diǎn)睛】本題主要考查了二項(xiàng)式展開項(xiàng)的系數(shù),屬于簡單題.14.【解析】
先把復(fù)數(shù)進(jìn)行化簡,然后利用求模公式可得結(jié)果.【詳解】.故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)模的求解,利用復(fù)數(shù)的運(yùn)算把復(fù)數(shù)化為的形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15.16【解析】
要得到的系數(shù),只要求出二項(xiàng)式中的系數(shù)減去的系數(shù)的2倍即可【詳解】的系數(shù)為.故答案為:16【點(diǎn)睛】此題考查二項(xiàng)式的系數(shù),屬于基礎(chǔ)題.16.-【解析】試題分析:根據(jù)題意設(shè)三角形的三邊長分別設(shè)為為a,2a,2a,∵2a>2a>a,∴2a所對(duì)的角為最大角,設(shè)為θ,則根據(jù)余弦定理得考點(diǎn):余弦定理及等比數(shù)列的定義.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】
(1)在上有解,,設(shè),求導(dǎo)根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以是的最大值點(diǎn),所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以是的最小值點(diǎn),,則,故.【點(diǎn)睛】本題考查了函數(shù)的切線問題,證明不等式,意在考查學(xué)生的綜合應(yīng)用能力和轉(zhuǎn)化能力.18.(1);(2)(i)詳見解析;(ii)會(huì)超過;詳見解析【解析】
(1)利用組合進(jìn)行計(jì)算以及概率表示,可得結(jié)果.(2)(i)寫出X所有可能取值,并計(jì)算相對(duì)應(yīng)的概率,列出表格可得結(jié)果.(ii)由(i)的條件結(jié)合7月與8月空氣質(zhì)量所對(duì)應(yīng)的概率,可得7月與8月經(jīng)濟(jì)損失的期望和,最后7月、8月、9月經(jīng)濟(jì)損失總額的數(shù)學(xué)期望與2.88萬元比較,可得結(jié)果.【詳解】(1)設(shè)ξ為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則P(ξ=2),P(ξ=3),則這3天中空氣質(zhì)量至少有2天為優(yōu)的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業(yè)9月的經(jīng)濟(jì)損失的數(shù)學(xué)期望為30E(X),即30E(X)=9060元,設(shè)7月、8月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為Y元,可得:,,,E(Y)=02201480320(元),所以該企業(yè)7月、8月這兩個(gè)月因空氣質(zhì)量造成經(jīng)濟(jì)損失總額的數(shù)學(xué)期望為320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月這三個(gè)月因空氣質(zhì)量造成經(jīng)濟(jì)損失總額的數(shù)學(xué)期望會(huì)超過2.88萬元.【點(diǎn)睛】本題考查概率中的分布列以及數(shù)學(xué)期望,屬基礎(chǔ)題。19.(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見解析【解析】
(1)根據(jù)函數(shù)解析式,先求得導(dǎo)函數(shù),由是函數(shù)的極值點(diǎn)可求得參數(shù).求得函數(shù)定義域,并根據(jù)導(dǎo)函數(shù)的符號(hào)即可判斷單調(diào)區(qū)間.(2)當(dāng)時(shí),.代入函數(shù)解析式放縮為,代入證明的不等式可化為,構(gòu)造函數(shù),并求得,由函數(shù)單調(diào)性及零點(diǎn)存在定理可知存在唯一的,使得成立,因而求得函數(shù)的最小值,由對(duì)數(shù)式變形化簡可證明,即成立,原不等式得證.【詳解】(1)函數(shù)可求得,則解得所以,定義域?yàn)椋趩握{(diào)遞增,而,∴當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,此時(shí)是函數(shù)的極小值點(diǎn),的遞減區(qū)間為,遞增區(qū)間為(2)證明:當(dāng)時(shí),,因此要證當(dāng)時(shí),,只需證明,即令,則,在是單調(diào)遞增,而,∴存在唯一的,使得,當(dāng),單調(diào)遞減,當(dāng),單調(diào)遞增,因此當(dāng)時(shí),函數(shù)取得最小值,,,故,從而,即,結(jié)論成立.【點(diǎn)睛】本題考查了由函數(shù)極值求參數(shù),并根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)區(qū)間,利用導(dǎo)數(shù)證明不等式恒成立,構(gòu)造函數(shù)法的綜合應(yīng)用,屬于難題.20.(1)(2)詳見解析(3)【解析】
試題分析:(1)當(dāng)時(shí),,由得減區(qū)間;(2)因?yàn)?,所以,因?yàn)樗裕匠逃袃蓚€(gè)不相等的實(shí)數(shù)根;(3)因?yàn)椋?,所以試題解析:(1)當(dāng)時(shí),,由得減區(qū)間;(2)法1:,,,所以,方程有兩個(gè)不相等的實(shí)數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個(gè)不相等的實(shí)數(shù)根;(3)因?yàn)?,,又在和增,在減,所以.考點(diǎn):利用導(dǎo)數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關(guān)系21.(1)(2)當(dāng)G點(diǎn)橫坐標(biāo)為整數(shù)時(shí),S不是整數(shù).【解析】
(1)先求解導(dǎo)數(shù),得出切線方程,聯(lián)立方程得出交點(diǎn)G的軌跡方程;(2)先求解弦長,再分別求解點(diǎn)到直線的距離,表示出四邊形的面積,結(jié)合點(diǎn)G的橫坐標(biāo)為整數(shù)進(jìn)行判斷.【詳解】(1)設(shè),則,拋物線C的方程可化為,則,所以曲線C在點(diǎn)A處的切線方程為,在點(diǎn)B處的切線方程為,因?yàn)閮汕芯€均過點(diǎn)G,所以,所以A,B兩點(diǎn)均在直線上,所以直線AB的方程為,又因?yàn)橹本€A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版數(shù)學(xué)六年級(jí)下冊(cè)《練習(xí)五》具體內(nèi)容及教學(xué)建議
- 長沙醫(yī)學(xué)院《兼并與收購》2023-2024學(xué)年第二學(xué)期期末試卷
- 手足口病合并肺炎護(hù)理
- 山東省日照市嵐山區(qū)2025屆數(shù)學(xué)五年級(jí)第二學(xué)期期末達(dá)標(biāo)檢測試題含答案
- Web即時(shí)通訊系統(tǒng)課程
- 湖南三一工業(yè)職業(yè)技術(shù)學(xué)院《物流分析與設(shè)施規(guī)劃》2023-2024學(xué)年第二學(xué)期期末試卷
- 濰坊護(hù)理職業(yè)學(xué)院《企業(yè)文化研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 常德職業(yè)技術(shù)學(xué)院《化工制圖與CAD實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 西藏民族大學(xué)《實(shí)驗(yàn)室安全與規(guī)范》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣安職業(yè)技術(shù)學(xué)院《教學(xué)設(shè)計(jì)團(tuán)體操創(chuàng)編理論與實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年上海浦東新區(qū)高三二模高考語文試卷試題(含答案)
- 浙江國企招聘2025寧波樞智交通科技有限公司招聘21人筆試參考題庫附帶答案詳解
- 廣東省清遠(yuǎn)市清新區(qū)2025年中考一模語文試題(含答案)
- 2024年廣州市天河區(qū)總工會(huì)招聘工會(huì)社會(huì)工作者考試真題
- 2025餐飲服務(wù)承包經(jīng)營合同書
- 湖北省漢陽一中、江夏一中、洪山高中2024-2025學(xué)年高一下學(xué)期3月聯(lián)考化學(xué)試卷 含解析
- 護(hù)理安全與護(hù)理質(zhì)量管理課件
- DB32T 5061.1-2025中小學(xué)生健康管理技術(shù)規(guī)范 第1部分:心理健康
- 糖尿病酮癥酸中毒患者的護(hù)理查房
- 網(wǎng)絡(luò)周期竊取演變-洞察分析
- 醫(yī)療質(zhì)量與安全管理和持續(xù)改進(jìn)評(píng)價(jià)考核標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論