




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁江蘇農(nóng)牧科技職業(yè)學(xué)院
《機(jī)器學(xué)習(xí)雙語》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行特征選擇時(shí),有多種方法可以評估特征的重要性。假設(shè)我們有一個(gè)包含多個(gè)特征的數(shù)據(jù)集。以下關(guān)于特征重要性評估方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.信息增益通過計(jì)算特征引入前后信息熵的變化來衡量特征的重要性B.卡方檢驗(yàn)可以檢驗(yàn)特征與目標(biāo)變量之間的獨(dú)立性,從而評估特征的重要性C.隨機(jī)森林中的特征重要性評估是基于特征對模型性能的貢獻(xiàn)程度D.所有的特征重要性評估方法得到的結(jié)果都是完全準(zhǔn)確和可靠的,不需要進(jìn)一步驗(yàn)證2、在進(jìn)行模型評估時(shí),除了準(zhǔn)確率、召回率等指標(biāo),還可以使用混淆矩陣來更全面地了解模型的性能。假設(shè)我們有一個(gè)二分類模型的混淆矩陣。以下關(guān)于混淆矩陣的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.混淆矩陣的行表示真實(shí)類別,列表示預(yù)測類別B.真陽性(TruePositive,TP)表示實(shí)際為正例且被預(yù)測為正例的樣本數(shù)量C.假陰性(FalseNegative,F(xiàn)N)表示實(shí)際為正例但被預(yù)測為負(fù)例的樣本數(shù)量D.混淆矩陣只能用于二分類問題,不能用于多分類問題3、假設(shè)正在開發(fā)一個(gè)用于推薦系統(tǒng)的深度學(xué)習(xí)模型,需要考慮用戶的短期興趣和長期興趣。以下哪種模型結(jié)構(gòu)可以同時(shí)捕捉這兩種興趣?()A.注意力機(jī)制與循環(huán)神經(jīng)網(wǎng)絡(luò)的結(jié)合B.多層感知機(jī)與卷積神經(jīng)網(wǎng)絡(luò)的組合C.生成對抗網(wǎng)絡(luò)與自編碼器的融合D.以上模型都有可能4、在深度學(xué)習(xí)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用于圖像識別等領(lǐng)域。假設(shè)我們正在設(shè)計(jì)一個(gè)CNN模型,對于圖像分類任務(wù),以下哪個(gè)因素對模型性能的影響較大()A.卷積核的大小B.池化層的窗口大小C.全連接層的神經(jīng)元數(shù)量D.以上因素影響都不大5、在一個(gè)分類問題中,如果數(shù)據(jù)集中存在噪聲和錯(cuò)誤標(biāo)簽,以下哪種模型可能對這類噪聲具有一定的魯棒性?()A.集成學(xué)習(xí)模型B.深度學(xué)習(xí)模型C.支持向量機(jī)D.決策樹6、假設(shè)在一個(gè)醫(yī)療診斷的場景中,需要通過機(jī)器學(xué)習(xí)算法來預(yù)測患者是否患有某種疾病。收集了大量患者的生理指標(biāo)、病史和生活習(xí)慣等數(shù)據(jù)。在選擇算法時(shí),需要考慮模型的準(zhǔn)確性、可解釋性以及對新數(shù)據(jù)的泛化能力。以下哪種算法可能是最適合的?()A.決策樹算法,因?yàn)樗軌蚯逦卣故緵Q策過程,具有較好的可解釋性,但可能在復(fù)雜數(shù)據(jù)上的準(zhǔn)確性有限B.支持向量機(jī)算法,對高維數(shù)據(jù)有較好的處理能力,準(zhǔn)確性較高,但模型解釋相對困難C.隨機(jī)森林算法,由多個(gè)決策樹組成,準(zhǔn)確性較高且具有一定的抗噪能力,但可解釋性一般D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)算法,能夠自動(dòng)提取特征,準(zhǔn)確性可能很高,但模型非常復(fù)雜,難以解釋7、假設(shè)正在進(jìn)行一個(gè)異常檢測任務(wù),例如檢測網(wǎng)絡(luò)中的異常流量。如果正常數(shù)據(jù)的模式較為復(fù)雜,以下哪種方法可能更適合用于發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于分類的方法8、在深度學(xué)習(xí)中,批量歸一化(BatchNormalization)的主要作用是()A.加速訓(xùn)練B.防止過擬合C.提高模型泛化能力D.以上都是9、當(dāng)處理不平衡數(shù)據(jù)集(即某個(gè)類別在數(shù)據(jù)中占比極?。r(shí),以下哪種方法可以提高模型對少數(shù)類別的識別能力()A.對多數(shù)類別進(jìn)行欠采樣B.對少數(shù)類別進(jìn)行過采樣C.調(diào)整分類閾值D.以上方法都可以10、想象一個(gè)圖像分類的競賽,要求在有限的計(jì)算資源和時(shí)間內(nèi)達(dá)到最高的準(zhǔn)確率。以下哪種優(yōu)化策略可能是最關(guān)鍵的?()A.數(shù)據(jù)增強(qiáng),通過對原始數(shù)據(jù)進(jìn)行隨機(jī)變換增加數(shù)據(jù)量,但可能引入噪聲B.超參數(shù)調(diào)優(yōu),找到模型的最優(yōu)參數(shù)組合,但搜索空間大且耗時(shí)C.模型壓縮,減少模型參數(shù)和計(jì)算量,如剪枝和量化,但可能損失一定精度D.集成學(xué)習(xí),組合多個(gè)模型的預(yù)測結(jié)果,提高穩(wěn)定性和準(zhǔn)確率,但訓(xùn)練成本高11、在使用樸素貝葉斯算法進(jìn)行分類時(shí),以下關(guān)于樸素貝葉斯的假設(shè)和特點(diǎn),哪一項(xiàng)是不正確的?()A.假設(shè)特征之間相互獨(dú)立,簡化了概率計(jì)算B.對于連續(xù)型特征,通常需要先進(jìn)行離散化處理C.樸素貝葉斯算法對輸入數(shù)據(jù)的分布沒有要求,適用于各種類型的數(shù)據(jù)D.樸素貝葉斯算法在處理高維度數(shù)據(jù)時(shí)性能較差,容易出現(xiàn)過擬合12、在進(jìn)行自動(dòng)特征工程時(shí),以下關(guān)于自動(dòng)特征工程方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)可以從原始數(shù)據(jù)中自動(dòng)提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動(dòng)特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動(dòng)特征工程需要大量的計(jì)算資源和時(shí)間,但可以提高特征工程的效率13、考慮一個(gè)圖像分割任務(wù),即將圖像分割成不同的區(qū)域或?qū)ο?。以下哪種方法常用于圖像分割?()A.閾值分割B.區(qū)域生長C.邊緣檢測D.以上都是14、假設(shè)正在進(jìn)行一個(gè)圖像生成任務(wù),例如生成逼真的人臉圖像。以下哪種生成模型在圖像生成領(lǐng)域取得了顯著成果?()A.變分自編碼器(VAE)B.生成對抗網(wǎng)絡(luò)(GAN)C.自回歸模型D.以上模型都常用于圖像生成15、某研究需要對音頻信號進(jìn)行分類,例如區(qū)分不同的音樂風(fēng)格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時(shí)域特征C.時(shí)頻特征D.以上特征都常用16、考慮在一個(gè)圖像識別任務(wù)中,需要對不同的物體進(jìn)行分類,例如貓、狗、汽車等。為了提高模型的準(zhǔn)確性和泛化能力,以下哪種數(shù)據(jù)增強(qiáng)技術(shù)可能是有效的()A.隨機(jī)旋轉(zhuǎn)圖像B.增加圖像的亮度C.對圖像進(jìn)行模糊處理D.減小圖像的分辨率17、機(jī)器學(xué)習(xí)在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于文本分類、情感分析、機(jī)器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法錯(cuò)誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個(gè)詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計(jì)算資源D.機(jī)器學(xué)習(xí)在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和發(fā)展18、在進(jìn)行遷移學(xué)習(xí)時(shí),以下關(guān)于遷移學(xué)習(xí)的應(yīng)用場景和優(yōu)勢,哪一項(xiàng)是不準(zhǔn)確的?()A.當(dāng)目標(biāo)任務(wù)的數(shù)據(jù)量較少時(shí),可以利用在大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的模型進(jìn)行遷移學(xué)習(xí)B.可以將在一個(gè)領(lǐng)域?qū)W習(xí)到的模型參數(shù)直接應(yīng)用到另一個(gè)不同但相關(guān)的領(lǐng)域中C.遷移學(xué)習(xí)能夠加快模型的訓(xùn)練速度,提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只適用于深度學(xué)習(xí)模型,對于傳統(tǒng)機(jī)器學(xué)習(xí)模型不適用19、假設(shè)正在進(jìn)行一個(gè)情感分析任務(wù),使用深度學(xué)習(xí)模型。以下哪種神經(jīng)網(wǎng)絡(luò)架構(gòu)常用于情感分析?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.長短時(shí)記憶網(wǎng)絡(luò)(LSTM)D.以上都可以20、某機(jī)器學(xué)習(xí)模型在訓(xùn)練時(shí)出現(xiàn)了過擬合現(xiàn)象,除了正則化,以下哪種方法也可以嘗試用于緩解過擬合?()A.增加訓(xùn)練數(shù)據(jù)B.減少特征數(shù)量C.早停法D.以上方法都可以21、某研究需要對一個(gè)大型數(shù)據(jù)集進(jìn)行降維,同時(shí)希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器22、在一個(gè)信用評估的問題中,需要根據(jù)個(gè)人的信用記錄、收入、債務(wù)等信息評估其信用風(fēng)險(xiǎn)。以下哪種模型評估指標(biāo)可能是最重要的?()A.準(zhǔn)確率(Accuracy),衡量正確分類的比例,但在不平衡數(shù)據(jù)集中可能不準(zhǔn)確B.召回率(Recall),關(guān)注正例的識別能力,但可能導(dǎo)致誤判增加C.F1分?jǐn)?shù),綜合考慮準(zhǔn)確率和召回率,但對不同類別的權(quán)重相同D.受試者工作特征曲線下面積(AUC-ROC),能夠評估模型在不同閾值下的性能,對不平衡數(shù)據(jù)較穩(wěn)健23、某機(jī)器學(xué)習(xí)項(xiàng)目需要對圖像中的物體進(jìn)行實(shí)例分割,除了常見的深度學(xué)習(xí)模型,以下哪種技術(shù)可以提高分割的精度?()A.多尺度訓(xùn)練B.數(shù)據(jù)增強(qiáng)C.模型融合D.以上技術(shù)都可以24、假設(shè)我們要使用機(jī)器學(xué)習(xí)算法來預(yù)測股票價(jià)格的走勢。以下哪種數(shù)據(jù)特征可能對預(yù)測結(jié)果幫助較?。ǎ〢.公司的財(cái)務(wù)報(bào)表數(shù)據(jù)B.社交媒體上關(guān)于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟(jì)指標(biāo)25、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于醫(yī)療診斷的機(jī)器學(xué)習(xí)系統(tǒng),需要對疾病進(jìn)行預(yù)測。由于醫(yī)療數(shù)據(jù)的敏感性和重要性,模型的可解釋性至關(guān)重要。以下哪種模型或方法在提供可解釋性方面具有優(yōu)勢?()A.深度學(xué)習(xí)模型B.決策樹C.集成學(xué)習(xí)模型D.強(qiáng)化學(xué)習(xí)模型二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡述機(jī)器學(xué)習(xí)在物理學(xué)中的應(yīng)用。2、(本題5分)解釋如何將二分類模型擴(kuò)展到多分類問題。3、(本題5分)解釋隨機(jī)森林算法的主要思想。4、(本題5分)機(jī)器學(xué)習(xí)在獸醫(yī)領(lǐng)域的應(yīng)用場景有哪些?三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)分析對抗樣本對圖像分類模型的影響,提出增強(qiáng)模型魯棒性的方法。2、(本題5分)使用CNN對指紋的細(xì)節(jié)特征進(jìn)行提取。3、(本題5分)利用KNN算法對植物的生長狀況進(jìn)行分類。4、(本題5分)使用CNN對CIFAR-10數(shù)據(jù)集進(jìn)行圖像分類。5、(本題5分)借助化學(xué)材
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 招商代理合同書
- 菜園種植租賃合同范本
- 廣告工人安裝合同范本
- 教導(dǎo)處下學(xué)期工作計(jì)劃
- 迎新晚會(huì)模板
- 閑置學(xué)校流轉(zhuǎn)合同范本
- 2025年度宣傳制作合同
- 2025年通過電子郵件簽訂合同的法律風(fēng)險(xiǎn)與挑戰(zhàn)
- 高中地理第四章同步導(dǎo)學(xué)案:工業(yè)地域的形成
- 2025標(biāo)準(zhǔn)版企業(yè)與個(gè)人間的借款協(xié)議合同
- 勞務(wù)聯(lián)合施工協(xié)議書
- 2025年廣東能源集團(tuán)云浮蓄能發(fā)電有限公司招聘筆試參考題庫含答案解析
- 2024年考生面對挑戰(zhàn)時(shí)的心理調(diào)整試題及答案
- 2025-2030全球及中國4,4-二氟二苯甲酮行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報(bào)告
- 【初中地理】撒哈拉以南非洲課件-2024-2025學(xué)年人教版地理七年級下冊
- 2024年信息安全試題及答案
- 藥物治療管理MTM
- 廣東省佛山市南海區(qū)2024-2025學(xué)年七年級外研版英語期中練習(xí)題(含答案)
- 2025年中國鐵路投資集團(tuán)有限公司招聘(28人)筆試參考題庫附帶答案詳解
- 鋼筋精算管理操作手冊
- 2025年河南水利與環(huán)境職業(yè)學(xué)院單招職業(yè)技能測試題庫審定版
評論
0/150
提交評論