




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省洛陽(yáng)市偃師高中2025年高三綜合練習(xí)數(shù)學(xué)試題卷(三模)注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.2.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個(gè)表面中任選個(gè),則選取的個(gè)表面互相垂直的概率為()A. B. C. D.3.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對(duì)任意,,都有,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,則的最小值為()A. B. C. D.5.等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.76.已知,,分別是三個(gè)內(nèi)角,,的對(duì)邊,,則()A. B. C. D.7.如圖是計(jì)算值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.8.已知,為兩條不同直線,,,為三個(gè)不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號(hào)為()A.②③ B.②③④ C.①④ D.①②③9.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則()A. B. C. D.10.已知甲、乙兩人獨(dú)立出行,各租用共享單車一次(假定費(fèi)用只可能為、、元).甲、乙租車費(fèi)用為元的概率分別是、,甲、乙租車費(fèi)用為元的概率分別是、,則甲、乙兩人所扣租車費(fèi)用相同的概率為()A. B. C. D.11.設(shè),,,則()A. B. C. D.12.復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.若正實(shí)數(shù)x,y,滿足x+2y=5,則x214.在中,內(nèi)角所對(duì)的邊分別是.若,,則__,面積的最大值為___.15.某高校組織學(xué)生辯論賽,六位評(píng)委為選手成績(jī)打出分?jǐn)?shù)的莖葉圖如圖所示,若去掉一個(gè)最高分,去掉一個(gè)最低分,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為______.16.已知實(shí)數(shù)x,y滿足(2x-y)2+4y三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面平面;(2)求二面角的余弦值.18.(12分)[選修4-5:不等式選講]設(shè)函數(shù).(1)求不等式的解集;(2)已知關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.19.(12分)某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗(yàn)1000人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000次.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn)次.假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.(1)設(shè)方案②中,某組個(gè)人的每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;(2)設(shè),試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))20.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.21.(12分)設(shè)函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若函數(shù)的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.22.(10分)在國(guó)家“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對(duì)某種產(chǎn)品的研發(fā)投入.為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到一組檢測(cè)數(shù)據(jù)如表所示:試銷價(jià)格(元)產(chǎn)品銷量(件)已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.(1)試判斷誰(shuí)的計(jì)算結(jié)果正確?(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過,則稱該檢測(cè)數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,如圖:由底面邊長(zhǎng)可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點(diǎn)睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.2、A【解析】
根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對(duì)數(shù),再求出四個(gè)面中任選2個(gè)的方法數(shù),從而可計(jì)算概率.【詳解】由已知平面,,可得,從該三棱錐的個(gè)面中任選個(gè)面共有種不同的選法,而選取的個(gè)表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點(diǎn)睛】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個(gè)數(shù).3、A【解析】
根據(jù)題意,分析可得函數(shù)的圖象關(guān)于對(duì)稱且在上為減函數(shù),則不等式等價(jià)于,解得的取值范圍,即可得答案.【詳解】解:因?yàn)楹瘮?shù)為偶函數(shù),所以函數(shù)的圖象關(guān)于對(duì)稱,因?yàn)閷?duì)任意,,都有,所以函數(shù)在上為減函數(shù),則,解得:.即實(shí)數(shù)的取值范圍是.故選:A.【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性與單調(diào)性的綜合應(yīng)用,涉及不等式的解法,屬于綜合題.4、D【解析】
由,可求出等比數(shù)列的通項(xiàng)公式,進(jìn)而可知當(dāng)時(shí),;當(dāng)時(shí),,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時(shí),;當(dāng)時(shí),,則的最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于中檔題.5、B【解析】
在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項(xiàng)公式求得公差.【詳解】在等差數(shù)列的前項(xiàng)和為,則則故選:B【點(diǎn)睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.6、C【解析】
原式由正弦定理化簡(jiǎn)得,由于,可求的值.【詳解】解:由及正弦定理得.因?yàn)?,所以代入上式化?jiǎn)得.由于,所以.又,故.故選:C.【點(diǎn)睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,屬于中檔題.7、B【解析】
根據(jù)計(jì)算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式.【詳解】因?yàn)樵摮绦驁D是計(jì)算值的一個(gè)程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點(diǎn)睛】本題考查了程序框圖的簡(jiǎn)單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.8、C【解析】
根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯(cuò)誤;若,,則可能平行,故③錯(cuò)誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.9、B【解析】
設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.10、B【解析】
甲、乙兩人所扣租車費(fèi)用相同即同為1元,或同為2元,或同為3元,由獨(dú)立事件的概率公式計(jì)算即得.【詳解】由題意甲、乙租車費(fèi)用為3元的概率分別是,∴甲、乙兩人所扣租車費(fèi)用相同的概率為.故選:B.【點(diǎn)睛】本題考查獨(dú)立性事件的概率.掌握獨(dú)立事件的概率乘法公式是解題基礎(chǔ).11、A【解析】
先利用換底公式將對(duì)數(shù)都化為以2為底,利用對(duì)數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.12、B【解析】
設(shè),則,可得,即可得到,進(jìn)而找到對(duì)應(yīng)的點(diǎn)所在象限.【詳解】設(shè),則,,,所以復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)為,在第二象限.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在象限,考查復(fù)數(shù)的模,考查運(yùn)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】
分析:將題中的式子進(jìn)行整理,將x+1當(dāng)做一個(gè)整體,之后應(yīng)用已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問題的求解方法,即可求得結(jié)果.詳解:x2-3x+1+2點(diǎn)睛:該題屬于應(yīng)用基本不等式求最值的問題,解決該題的關(guān)鍵是需要對(duì)式子進(jìn)行化簡(jiǎn),轉(zhuǎn)化,利用整體思維,最后注意此類問題的求解方法-------相乘,即可得結(jié)果.14、1【解析】
由正弦定理,結(jié)合,,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【詳解】因?yàn)?,所以由正弦定理可得,所?所以,當(dāng),即時(shí),三角形面積最大.故答案為(1).1(2).【點(diǎn)睛】本題主要考查解三角形的問題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎(chǔ)題型.15、【解析】
先根據(jù)莖葉圖求出平均數(shù)和中位數(shù),然后可得結(jié)果.【詳解】剩下的四個(gè)數(shù)為83,85,87,95,且這四個(gè)數(shù)的平均數(shù),這四個(gè)數(shù)的中位數(shù)為,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為.【點(diǎn)睛】本題主要考查莖葉圖的識(shí)別和統(tǒng)計(jì)量的計(jì)算,側(cè)重考查數(shù)據(jù)分析和數(shù)學(xué)運(yùn)算的核心素養(yǎng).16、2【解析】
直接利用柯西不等式得到答案.【詳解】根據(jù)柯西不等式:2x-y2+4y當(dāng)2x-y=2y,即x=328故答案為:2.【點(diǎn)睛】本題考查了柯西不等式求最值,也可以利用均值不等式,三角換元求得答案.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.通過證明,證得平面,由此證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.設(shè),則,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如圖所示的空間坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面的法向量為,∴,令得.設(shè)平面的法向量為,∴,令得,∴,∴二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)(2)【解析】
(1)零點(diǎn)分段去絕對(duì)值解不等式即可(2)由題在上有解,去絕對(duì)值分離變量a即可.【詳解】(1)不等式,即等價(jià)于或或解得,所以原不等式的解集為;(2)當(dāng)時(shí),不等式,即,所以在上有解即在上有解,所以,.【點(diǎn)睛】本題考查絕對(duì)值不等式解法,不等式有解求參數(shù),熟記零點(diǎn)分段,熟練處理不等式有解問題是關(guān)鍵,是中檔題.19、(1)分布列見解析;(2)406.【解析】
(1)計(jì)算個(gè)人的血混合后呈陰性反應(yīng)的概率為,呈陽(yáng)性反應(yīng)的概率為,得到分布列.(2)計(jì)算,代入數(shù)據(jù)計(jì)算比較大小得到答案.【詳解】(1)設(shè)每個(gè)人的血呈陰性反應(yīng)的概率為,則.所以個(gè)人的血混合后呈陰性反應(yīng)的概率為,呈陽(yáng)性反應(yīng)的概率為.依題意可知,,所以的分布列為:(2)方案②中.結(jié)合(1)知每個(gè)人的平均化驗(yàn)次數(shù)為:時(shí),,此時(shí)1000人需要化驗(yàn)的總次數(shù)為690次,時(shí),,此時(shí)1000人需要化驗(yàn)的總次數(shù)為604次,時(shí),,此時(shí)1000人需要化驗(yàn)的次數(shù)總為594次,即時(shí)化驗(yàn)次數(shù)最多,時(shí)次數(shù)居中,時(shí)化驗(yàn)次數(shù)最少,而采用方案①則需化驗(yàn)1000次,故在這三種分組情況下,相比方案①,當(dāng)時(shí)化驗(yàn)次數(shù)最多可以平均減少次.【點(diǎn)睛】本題考查了分布列,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.20、(1)證明見解析(2)【解析】
(1)取中點(diǎn)為,連接,,,,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點(diǎn),,,為,,軸建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點(diǎn)為,連接,,,如下圖所示:因?yàn)?,,,所以,故為等邊三角形,則.連接,因?yàn)?,,所以為等邊三角形,則.又,所以平面.因?yàn)槠矫?,所?(2)由(1)知,因?yàn)槠矫嫫矫?,平面,所以平面,以為原點(diǎn),,,為,,軸建立如圖所示的空間直角坐標(biāo)系,易求,則,,,,則,,.設(shè)平面的法向量,則即令,則,,故.設(shè)平面的法向量,則則令,則,,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件開發(fā)工程師工作總結(jié)范文
- 租賃市場(chǎng)推廣項(xiàng)目協(xié)議
- 離職指導(dǎo)與支持協(xié)議
- 成本計(jì)算借款協(xié)議
- 電子交易合作協(xié)議
- 時(shí)代產(chǎn)品借款協(xié)議
- 2025年消防執(zhí)業(yè)資格考試題庫(kù)(綜合案例分析題)-消防工程設(shè)計(jì)變更與施工監(jiān)理試題
- 2025年安全生產(chǎn)考試題庫(kù):有限空間作業(yè)安全防護(hù)措施評(píng)估試題
- 2025年鄉(xiāng)村醫(yī)生考試題庫(kù):農(nóng)村中醫(yī)適宜技術(shù)中醫(yī)藥產(chǎn)業(yè)發(fā)展現(xiàn)狀試題
- 2025年安全生產(chǎn)考試題庫(kù):安全生產(chǎn)隱患排查治理事故案例分析試題
- 【部編版道德與法治六年級(jí)下冊(cè)】全冊(cè)測(cè)試卷(含答案)
- 食堂家長(zhǎng)開放日活動(dòng)方案及流程
- 人工智能技術(shù)應(yīng)用專業(yè)調(diào)研報(bào)告
- 《文化研究導(dǎo)論》全套教學(xué)課件
- 《易經(jīng)》與中國(guó)文化-第七講-《易經(jīng)》與中醫(yī)學(xué)、養(yǎng)生學(xué)解析
- 廈門大學(xué)網(wǎng)絡(luò)教育《經(jīng)濟(jì)學(xué)原理》專在線測(cè)試題庫(kù)及正確答案
- ISO9001、ISO14001及ISO45001質(zhì)量環(huán)境及職業(yè)健康安全三體系內(nèi)審及管審資料
- JBT 7713-2007 高碳高合金鋼制冷作模具顯微組織檢驗(yàn)
- 中國(guó)航空輪胎工業(yè)
- 心肺復(fù)蘇比賽主持詞
- 臨床醫(yī)學(xué)概要new課件
評(píng)論
0/150
提交評(píng)論