廣東省湛江一中2025屆第二學(xué)期期末高三年級(jí)數(shù)學(xué)試題_第1頁(yè)
廣東省湛江一中2025屆第二學(xué)期期末高三年級(jí)數(shù)學(xué)試題_第2頁(yè)
廣東省湛江一中2025屆第二學(xué)期期末高三年級(jí)數(shù)學(xué)試題_第3頁(yè)
廣東省湛江一中2025屆第二學(xué)期期末高三年級(jí)數(shù)學(xué)試題_第4頁(yè)
廣東省湛江一中2025屆第二學(xué)期期末高三年級(jí)數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省湛江一中2025屆第二學(xué)期期末高三年級(jí)數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平面直角坐標(biāo)系中,已知點(diǎn),,若動(dòng)點(diǎn)滿足,則的取值范圍是()A. B.C. D.2.設(shè)集合,則()A. B. C. D.3.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)4.在等腰直角三角形中,,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球的表面積為().A. B. C. D.5.的展開(kāi)式中的一次項(xiàng)系數(shù)為()A. B. C. D.6.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.7.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)8.阿波羅尼斯(約公元前262~190年)證明過(guò)這樣的命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)的點(diǎn)的軌跡是圓.后人將這個(gè)圓稱(chēng)為阿氏圓.若平面內(nèi)兩定點(diǎn),間的距離為2,動(dòng)點(diǎn)與,的距離之比為,當(dāng),,不共線時(shí),的面積的最大值是()A. B. C. D.9.若變量,滿足,則的最大值為()A.3 B.2 C. D.1010.如圖,在中,點(diǎn),分別為,的中點(diǎn),若,,且滿足,則等于()A.2 B. C. D.11.已知,則的大小關(guān)系是()A. B. C. D.12.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.4二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角的對(duì)邊長(zhǎng)分別為,已知,且,則_________.14.邊長(zhǎng)為2的正方形經(jīng)裁剪后留下如圖所示的實(shí)線圍成的部分,將所留部分折成一個(gè)正四棱錐.當(dāng)該棱錐的體積取得最大值時(shí),其底面棱長(zhǎng)為_(kāi)_______.15.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長(zhǎng)度的最大值為_(kāi)__________.16.已知等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則=__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)若不等式對(duì)恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實(shí)根為.令若存在,,,使得,證明:.18.(12分)已知各項(xiàng)均不相等的等差數(shù)列的前項(xiàng)和為,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)某企業(yè)質(zhì)量檢驗(yàn)員為了檢測(cè)生產(chǎn)線上零件的質(zhì)量情況,從生產(chǎn)線上隨機(jī)抽取了個(gè)零件進(jìn)行測(cè)量,根據(jù)所測(cè)量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據(jù)頻率分布直方圖,求這個(gè)零件尺寸的中位數(shù)(結(jié)果精確到);(2)若從這個(gè)零件中尺寸位于之外的零件中隨機(jī)抽取個(gè),設(shè)表示尺寸在上的零件個(gè)數(shù),求的分布列及數(shù)學(xué)期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個(gè)零件尺寸的樣本頻率視為概率.現(xiàn)對(duì)生產(chǎn)線上生產(chǎn)的零件進(jìn)行成箱包裝出售,每箱個(gè).企業(yè)在交付買(mǎi)家之前需要決策是否對(duì)每箱的所有零件進(jìn)行檢驗(yàn),已知每個(gè)零件的檢驗(yàn)費(fèi)用為元.若檢驗(yàn),則將檢驗(yàn)出的二等品更換為一等品;若不檢驗(yàn),如果有二等品進(jìn)入買(mǎi)家手中,企業(yè)要向買(mǎi)家對(duì)每個(gè)二等品支付元的賠償費(fèi)用.現(xiàn)對(duì)一箱零件隨機(jī)抽檢了個(gè),結(jié)果有個(gè)二等品,以整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值作為決策依據(jù),該企業(yè)是否對(duì)該箱余下的所有零件進(jìn)行檢驗(yàn)?請(qǐng)說(shuō)明理由.20.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.21.(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實(shí)數(shù)為方程的兩不等實(shí)根,求證:.22.(10分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時(shí),若,,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

設(shè)出的坐標(biāo)為,依據(jù)題目條件,求出點(diǎn)的軌跡方程,寫(xiě)出點(diǎn)的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結(jié)果.【詳解】設(shè),則∵,∴∴∴為點(diǎn)的軌跡方程∴點(diǎn)的參數(shù)方程為(為參數(shù))則由向量的坐標(biāo)表達(dá)式有:又∵∴故選:D【點(diǎn)睛】考查學(xué)生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關(guān)點(diǎn)法;④參數(shù)法;⑤待定系數(shù)法2、C【解析】

解對(duì)數(shù)不等式求得集合,由此求得兩個(gè)集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點(diǎn)睛】本小題主要考查對(duì)數(shù)不等式的解法,考查集合交集的概念和運(yùn)算,屬于基礎(chǔ)題.3、C【解析】

根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯(cuò)誤,為偶函數(shù),故錯(cuò)誤,是奇函數(shù),故正確.為偶函數(shù),故錯(cuò)誤,故選:.【點(diǎn)睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.4、D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點(diǎn)睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計(jì)算能力,屬于中檔題型,求幾何體的外接球的半徑時(shí),一般可以用補(bǔ)形法,因正方體,長(zhǎng)方體的外接球半徑容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長(zhǎng)方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.5、B【解析】

根據(jù)多項(xiàng)式乘法法則得出的一次項(xiàng)系數(shù),然后由等差數(shù)列的前項(xiàng)和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開(kāi)式中的一次項(xiàng)系數(shù)為.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,應(yīng)用多項(xiàng)式乘法法則可得展開(kāi)式中某項(xiàng)系數(shù).同時(shí)本題考查了組合數(shù)公式.6、D【解析】

由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.7、C【解析】

由奇函數(shù)的性質(zhì)可得,進(jìn)而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因?yàn)槭嵌x在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.8、A【解析】

根據(jù)平面內(nèi)兩定點(diǎn),間的距離為2,動(dòng)點(diǎn)與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結(jié)合求解.【詳解】如圖所示:設(shè),,,則,化簡(jiǎn)得,當(dāng)點(diǎn)到(軸)距離最大時(shí),的面積最大,∴面積的最大值是.故選:A.【點(diǎn)睛】本題主要考查軌跡的求法和圓的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.9、D【解析】

畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫(huà)出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想,屬于中檔題.10、D【解析】

選取為基底,其他向量都用基底表示后進(jìn)行運(yùn)算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點(diǎn)睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個(gè)不共線向量作為基底,其他向量都用基底表示參與運(yùn)算,這樣做目標(biāo)明確,易于操作.11、B【解析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對(duì)數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對(duì)稱(chēng),則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對(duì)數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.12、B【解析】

根據(jù)函數(shù)的奇偶性和單調(diào)性得到可行域,畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫(huà)出可行域和目標(biāo)函數(shù),,即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當(dāng)直線過(guò)點(diǎn),即時(shí),有最小值為.故選:.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性和奇偶性,線性規(guī)劃問(wèn)題,意在考查學(xué)生的綜合應(yīng)用能力,畫(huà)出圖像是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】∵∴根據(jù)正弦定理與余弦定理可得:,即∵∴∵∴故答案為414、【解析】

根據(jù)題意,建立棱錐體積的函數(shù),利用導(dǎo)數(shù)求函數(shù)的最大值即可.【詳解】設(shè)底面邊長(zhǎng)為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數(shù)在時(shí)取得最大值.故此時(shí)底面棱長(zhǎng).故答案為:.【點(diǎn)睛】本題考查棱錐體積的求解,涉及利用導(dǎo)數(shù)研究體積最大值的問(wèn)題,屬綜合中檔題.15、【解析】

取的中點(diǎn)為M,由可得,可得M在上,當(dāng)最小時(shí),弦的長(zhǎng)才最大.【詳解】設(shè)為的中點(diǎn),,即,即,,.設(shè),則,得.所以,.故答案為:【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查學(xué)生的邏輯推理、數(shù)形結(jié)合的思想,是一道有一定難度的題.16、【解析】

根據(jù)等差中項(xiàng)性質(zhì),結(jié)合等比數(shù)列通項(xiàng)公式即可求得公比;代入表達(dá)式,結(jié)合對(duì)數(shù)式的化簡(jiǎn)即可求解.【詳解】等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項(xiàng)公式可知,所以,解得或(舍),所以由對(duì)數(shù)式運(yùn)算性質(zhì)可得,故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的簡(jiǎn)單應(yīng)用,等比數(shù)列通項(xiàng)公式的用法,對(duì)數(shù)式的化簡(jiǎn)運(yùn)算,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析(3)證明見(jiàn)解析【解析】

(1)由題意可得,,令,利用導(dǎo)數(shù)得在上單調(diào)遞減,進(jìn)而可得結(jié)論;(2)不等式轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進(jìn)而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,,再利用導(dǎo)數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結(jié)論.【詳解】(1),即,化簡(jiǎn)可得.令,,因?yàn)?,所以?所以,在上單調(diào)遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設(shè),則.在上,,所以在上單調(diào)遞減.在上,,所以在上單調(diào)遞增,所以.設(shè),因?yàn)樵谏鲜菧p函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實(shí)根為,即,要證,由可知,即要證.當(dāng)時(shí),,,因而在上單調(diào)遞增.當(dāng)時(shí),,,因而在上單調(diào)遞減.因?yàn)?,所以,要證.即要證.記,.因?yàn)?,所以,則..設(shè),,當(dāng)時(shí),.時(shí),,故.且,故,因?yàn)?,所?因此,即在上單調(diào)遞增.所以,即.故得證.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性、最值、函數(shù)恒成立問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,轉(zhuǎn)化思想,構(gòu)造函數(shù)研究單調(diào)性,屬于難題.18、(1);(2).【解析】試題分析:(1)設(shè)公差為,列出關(guān)于的方程組,求解的值,即可得到數(shù)列的通項(xiàng)公式;(2)由(1)可得,即可利用裂項(xiàng)相消求解數(shù)列的和.試題解析:(1)設(shè)公差為.由已知得,解得或(舍去),所以,故.(2),考點(diǎn):等差數(shù)列的通項(xiàng)公式;數(shù)列的求和.19、(1);(2)分布列見(jiàn)詳解,期望為;(3)余下所有零件不用檢驗(yàn),理由見(jiàn)詳解.【解析】

(1)計(jì)算的頻率,并且與進(jìn)行比較,判斷中位數(shù)落在的區(qū)間,然后根據(jù)頻率的計(jì)算方法,可得結(jié)果.(2)計(jì)算位于之外的零件中隨機(jī)抽取個(gè)的總數(shù),寫(xiě)出所有可能取值,并計(jì)算相對(duì)應(yīng)的概率,列出分布列,計(jì)算期望,可得結(jié)果.(3)計(jì)算整箱的費(fèi)用,根據(jù)余下零件個(gè)數(shù)服從二項(xiàng)分布,可得余下零件個(gè)數(shù)的期望值,然后計(jì)算整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值,進(jìn)行比較,可得結(jié)果.【詳解】(1)尺寸在的頻率:尺寸在的頻率:且所以可知尺寸的中位數(shù)落在假設(shè)尺寸中位數(shù)為所以所以這個(gè)零件尺寸的中位數(shù)(2)尺寸在的個(gè)數(shù)為尺寸在的個(gè)數(shù)為的所有可能取值為1,2,3,4則,,所以的分布列為(3)二等品的概率為如果對(duì)余下的零件進(jìn)行檢驗(yàn)則整箱的檢驗(yàn)費(fèi)用為(元)余下二等品的個(gè)數(shù)期望值為如果不對(duì)余下的零件進(jìn)行檢驗(yàn),整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值為(元)所以,所以可以不對(duì)余下的零件進(jìn)行檢驗(yàn).【點(diǎn)睛】本題考查頻率分布直方圖的應(yīng)用,掌握中位數(shù),平均數(shù),眾數(shù)的計(jì)算方法,中位數(shù)的理解應(yīng)該從中位數(shù)開(kāi)始左右兩邊的頻率各為0.5,考驗(yàn)分析能力以及數(shù)據(jù)處理,屬中檔題.20、(1)見(jiàn)解析;(2)【解析】

(1)根據(jù)面面垂直性質(zhì)及線面垂直性質(zhì),可證明;由所給線段關(guān)系,結(jié)合勾股定理逆定理,可證明,進(jìn)而由線面垂直的判定定理證明平面.(2)建立空間直角坐標(biāo)系,寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,由空間向量法求得兩個(gè)平面夾角的余弦值,結(jié)合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的法向量是,則,令,,由(1)可知平面的法向量是,∴,由圖可知,二面角為鈍二面角,所以二面角的大小為.【點(diǎn)睛】本題考查了線面垂直的判定,面面垂直及線面垂直的性質(zhì)應(yīng)用,空間向量法求二面角的大小,屬于中檔題.21、(1)答案不唯一,具體見(jiàn)解析(2)證明見(jiàn)解析【解析】

(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,分析不等式,即轉(zhuǎn)化為,設(shè),再構(gòu)造函數(shù),利用導(dǎo)數(shù)得單調(diào)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論