


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、181 勾股定理(四)一、教學目標1會用勾股定理解決較綜合的問題。2樹立數(shù)形結合的思想。二、重點、難點1重點:勾股定理的綜合應用。2難點:勾股定理的綜合應用。三、例題的意圖分析例1(補充)“雙垂圖”是中考重要的考點,熟練掌握“雙垂圖”的圖形結構和圖形性質(zhì),通過討論、計算等使學生能夠靈活應用。目前“雙垂圖”需要掌握的知識點有:3個直角三角形,三個勾股定理及推導式BC2-BD2=AC2-AD2,兩對相等銳角,四對互余角,及30或45特殊角的特殊性質(zhì)等。例2(補充)讓學生注意所求結論的開放性,根據(jù)已知條件,作適當輔助線求出三角形中的邊和角。讓學生掌握解一般三角形的問題常常通過作高轉(zhuǎn)化為直角三角形的問
2、題。使學生清楚作輔助線不能破壞已知角。例3(補充)讓學生掌握不規(guī)則圖形的面積,可轉(zhuǎn)化為特殊圖形求解,本題通過將圖形轉(zhuǎn)化為直角三角形的方法,把四邊形面積轉(zhuǎn)化為三角形面積之差。在轉(zhuǎn)化的過程中注意條件的合理運用。讓學生把前面學過的知識和新知識綜合運用,提高解題的綜合能力。例4(教材P76頁探究3)讓學生利用尺規(guī)作圖和勾股定理畫出數(shù)軸上的無理數(shù)點,進一步體會數(shù)軸上的點與實數(shù)一一對應的理論。四、課堂引入復習勾股定理的內(nèi)容。本節(jié)課探究勾股定理的綜合應用。五、例習題分析例1(補充)1已知:在RtABC中,C=90,CDBC于D,A=60,CD=,求線段AB的長。分析:本題是“雙垂圖”的計算題,“雙垂圖”是中
3、考重要的考點,所以要求學生對圖形及性質(zhì)掌握非常熟練,能夠靈活應用。目前“雙垂圖”需要掌握的知識點有:3個直角三角形,三個勾股定理及推導式BC2-BD2=AC2-AD2,兩對相等銳角,四對互余角,及30或45特殊角的特殊性質(zhì)等。 要求學生能夠自己畫圖,并正確標圖。引導學生分析:欲求AB,可由AB=BD+CD,分別在兩個三角形中利用勾股定理和特殊角,求出BD=3和AD=1。或欲求AB,可由,分別在兩個三角形中利用勾股定理和特殊角,求出AC=2和BC=6。例2(補充)已知:如圖,ABC中,AC=4,B=45,A=60,根據(jù)題設可知什么?分析:由于本題中的ABC不是直角三角形,所以根據(jù)題設只能直接求得
4、ACB=75。在學生充分思考和討論后,發(fā)現(xiàn)添置AB邊上的高這條輔助線,就可以求得AD,CD,BD,AB,BC及SABC。讓學生充分討論還可以作其它輔助線嗎?為什么?小結:可見解一般三角形的問題常常通過作高轉(zhuǎn)化為直角三角形的問題。并指出如何作輔助線?解略。例3(補充)已知:如圖,B=D=90,A=60,AB=4,CD=2。求:四邊形ABCD的面積。分析:如何構造直角三角形是解本題的關鍵,可以連結AC,或延長AB、DC交于F,或延長AD、BC交于E,根據(jù)本題給定的角應選后兩種,進一步根據(jù)本題給定的邊選第三種較為簡單。教學中要逐層展示給學生,讓學生深入體會。解:延長AD、BC交于E。A=60,B=9
5、0,E=30。AE=2AB=8,CE=2CD=4,BE2=AE2-AB2=82-42=48,BE=。DE2= CE2-CD2=42-22=12,DE=。S四邊形ABCD=SABE-SCDE=ABBE-CDDE=小結:不規(guī)則圖形的面積,可轉(zhuǎn)化為特殊圖形求解,本題通過將圖形轉(zhuǎn)化為直角三角形的方法,把四邊形面積轉(zhuǎn)化為三角形面積之差。例4(教材P76頁探究3)分析:利用尺規(guī)作圖和勾股定理畫出數(shù)軸上的無理數(shù)點,進一步體會數(shù)軸上的點與實數(shù)一一對應的理論。變式訓練:在數(shù)軸上畫出表示的點。六、課堂練習1ABC中,AB=AC=25cm,高AD=20cm,則BC= ,SABC= 。2ABC中,若A=2B=3C,A
6、C=cm,則A= 度,B= 度,C= 度,BC= ,SABC= 。3ABC中,C=90,AB=4,BC=,CDAB于D,則AC= ,CD= ,BD= ,AD= ,SABC= 。4已知:如圖,ABC中,AB=26,BC=25,AC=17,求SABC。七、課后練習1在RtABC中,C=90,CDBC于D,A=60,CD=,AB= 。2在RtABC中,C=90,SABC=30,c=13,且ab,則a= ,b= 。3已知:如圖,在ABC中,B=30,C=45,AC=,求(1)AB的長;(2)SABC。4在數(shù)軸上畫出表示的點。課后反思:八、參考答案:課堂練習:130cm,300cm2;290,60,30,4,;32,3,1,;4作BDAC于D,設AD=x,則CD=17-x,252-x2=26
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程鋼筋承包合同
- 個人合作協(xié)議合同
- 綠色能源采購供應合作協(xié)議
- 物流運輸行業(yè)風險免責協(xié)議
- 合伙人退出協(xié)議6篇
- Module3 Unit2 Point to the window(教學設計)-2024-2025學年外研版(一起)英語一年級上冊
- 小學信息技術五年級上冊第4課《 美化圖像我來做》教學設計
- 濟南非金屬聲屏障施工方案
- 26 我的“長生果”教學設計-2024-2025學年語文五年級上冊統(tǒng)編版
- 砼滴水坑施工方案
- 《數(shù)學課程標準》義務教育2022年修訂版(原版)
- 設備拆裝施工方案
- 注冊安全工程師《安全生產(chǎn)管理知識》科目知識要點
- 研學旅行基地評估認定評分表
- 第5課 用發(fā)展的觀點看問題-【中職專用】2024年中職思想政治《哲學與人生》金牌課件(高教版2023·基礎模塊)
- 《新時代公民道德建設實施綱要》、《新時代愛國主義教育實施綱要》知識競賽試題庫55題(含答案)
- 小學百科知識競賽題庫200道及答案(完整版)
- JJ∕G(交通) 201-2024公路橋梁支座壓剪試驗機
- 2019-2020學年七年級(上)期末數(shù)學試卷2附解析
- 承包設備拆裝合同范本
- 電話接聽技巧與服務質(zhì)量提升方案三篇
評論
0/150
提交評論