已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
遼寧科技學(xué)院本科生畢業(yè)設(shè)計(jì)(論文) 第 1 頁 附錄 1 Categories of stamping forming Many deformation processes can be done by stamping, the basic processes of the stamping can be divided into two kinds: cutting and forming. Cutting is a shearing process that one part of the blank is cut form the other .It mainly includes blanking, punching, trimming, parting and shaving, where punching and blanking are the most widely used. Forming is a process that one part of the blank has some displacement form the other. It mainly includes deep drawing, bending, local forming, bulging, flanging, necking, sizing and spinning. In substance, stamping forming is such that the plastic deformation occurs in the deformation zone of the stamping blank caused by the external force. The stress state and deformation characteristic of the deformation zone are the basic factors to decide the properties of the stamping forming. Based on the stress state and deformation characteristics of the deformation zone, the forming methods can be divided into several categories with the same forming properties and to be studied systematically. The deformation zone in almost all types of stamping forming is in the plane stress state. Usually there is no force or only small force applied on the blank surface. When it is assumed that the stress perpendicular to the blank surface equal to zero, two principal stresses perpendicular to each other and act on the blank surface produce the plastic deformation of the material. Due to the small thickness of the blank, it is assumed approximately that the two principal stresses distribute uniformly along the thickness direction. Based on this analysis, the stress state and the deformation characteristics of the deformation zone in all kind of stamping forming can be denoted by the point in the coordinates of the plane principal stress(diagram of the stamping stress) and the coordinates of the corresponding plane principal stains (diagram of the stamping strain). The different points in the figures of the stamping stress and strain possess different stress state and deformation characteristics. When the deformation zone of the stamping blank is subjected toplanetensile stresses, it can be divided into two cases, that is 0,t=0and 0,t=0.In 遼寧科技學(xué)院本科生畢業(yè)設(shè)計(jì)(論文) 第 2 頁 both cases, the stress with the maximum absolute value is always a tensile stress. These two cases are analyzed respectively as follows. 2)In the case that 0andt=0, according to the integral theory, the relationships between stresses and strains are: /( -m) =/( -m) =t/( t -m) =k ( 1.1) where, , , t are the principal strains of the radial, tangential and thickness directions of the axial symmetrical stamping forming; , and tare the principal stresses of the radial, tangential and thickness directions of the axial symmetrical stamping forming;m is the average stress,m=( +t) /3; k is a constant. In plane stress state, Equation 1.1 3/( 2-) =3/( 2-t) =3t/-( t+) =k ( 1.2) Since 0,so 2-0 and 0.It indicates that in plane stress state with two axial tensile stresses, if the tensile stress with the maximum absolute value is , the principal strain in this direction must be positive, that is, the deformation belongs to tensile forming. In addition, because 0, therefore -( t+) 2,0. The range of is =0 . In the equibiaxial tensile stress state = ,according to Equation 1.2,=0 and t 0 and t=0, according to Equation 1.2 , 2 0 and 0,This result shows that for the plane stress state with two tensile stresses, when the 遼寧科技學(xué)院本科生畢業(yè)設(shè)計(jì)(論文) 第 3 頁 absoluste value of is the strain in this direction must be positive, that is, it must be in the state of tensile forming. Also because0, therefore -( t+) ,0. The range of is = =0 .When =,=0, that is, in equibiaxial tensile stress state, the tensile deformation with the same values occurs in the two tensile stress directions; when =0, =- /2, that is, in uniaxial tensile stress state, the deformation characteristic in this case is the same as that of the ordinary uniaxial tensile. This kind of deformation is in the region AON of the diagram of the stamping strain (see Fig.1.1), and in the region GOH of the diagram of the stamping stress (see Fig.1.2). Between above two cases of stamping deformation, the properties ofand, and the deformation caused by them are the same, only the direction of the maximum stress is different. These two deformations are same for isotropic homogeneous material. (1)When the deformation zone of stamping blank is subjected to two compressive stressesand(t=0), it can also be divided into two cases, which are 0 and t0.The strain in the thickness direction of the blankt is positive, and the thickness increases. The deformation condition in the tangential direction depends on the values of and .When =2,=0;when 2,0. 遼寧科技學(xué)院本科生畢業(yè)設(shè)計(jì)(論文) 第 4 頁 The range of is 0 and t0.The strain in the thickness direction of the blankt is positive, and the thickness increases. The deformation condition in the radial direction depends on the values of and . When =2, =0; when 2,0. The range of is 0.This kind of deformation is in the region GOL of the diagram of the stamping strain (see Fig.1.1), and in the region DOE of the diagram of the stamping stress (see Fig.1.2). The deformation zone of the stamping blank is subjected to two stresses with opposite signs, and the absolute value of the tensile stress is larger than that of the compressive stress. There exist two cases to be analyzed as follow: 1)When 0, |, according to Equation 1.2, 2-0 and 0.This result shows that in the plane stress state with opposite signs, if the stress with the maximum absolute value is tensile, the strain in the maximum stress direction is positive, that is, in the state of tensile forming. Also because 0, |, therefore =-. When =-, then 0,0,0, |, according to Equation 1.2, by means of the same analysis mentioned above, 0, that is, the deformation zone is in the plane stress state with opposite signs. If the stress with the maximum absolute value is tensile stress , the strain in this direction is positive, that is, in the state of tensile forming. The strain in the radial direction is negative ( =-. When =-, then 0, 0, 0,|, according to Equation 1.2, 2- 0 and 0. The strain in the tensile stress direction is positive, or in the state of tensile forming. The range of is 0=-.When =-, then 0,0,0, |, according to Equation 1.2 and by means of the same analysis mentioned above,=-.When =-, then 0, 0, =-.When =-, then 0, 0, 0 t=0和 0, t=0。再這兩種情況下,絕對(duì)值最大的應(yīng)力都是拉應(yīng)力。以下對(duì)這兩種情況進(jìn)行分析。 1)當(dāng) 0 且 t=0 時(shí),安全量理論可以寫出如下應(yīng)力與應(yīng)變的關(guān)系式: 遼寧科技學(xué)院本科生畢業(yè)設(shè)計(jì)(論文) 第 10頁 (1-1) /( - m) = /( - m) = t/( t - m) =k 式中 , , t 分 別 是 軸對(duì)稱沖壓 成 形時(shí) 的 徑向 主 應(yīng)變 、切向主 應(yīng) 變和厚度方向上的主 應(yīng)變 ; , , t 分 別 是 軸對(duì)稱沖壓 成 形時(shí) 的 徑向 主 應(yīng) 力、切向主 應(yīng) 力和厚度方向上的主 應(yīng) 力; m 平均 應(yīng) 力, m=( + + t) /3; k 常數(shù) 。在平面 應(yīng) 力 狀態(tài) ,式( 1 1)具有如下形式: 3 /( 2 - ) =3 /( 2 - t) =3 t/-( t+ ) =k ( 1 2) 因?yàn)?0,所以必定有 2 - 0 與 0。 這個(gè)結(jié) 果表明:在 兩向拉應(yīng) 力的平面 應(yīng) 力 狀態(tài)時(shí) ,如果 絕對(duì) 值最大 拉應(yīng) 力是 ,則在這個(gè)方向上的主應(yīng)變一定是正應(yīng)變,即是伸長變形。 又因?yàn)?0,所以必定有 -( t+ ) 2 時(shí), 0。 的變化范圍是 = =0 。在雙向等拉力狀態(tài)時(shí), = ,有式( 1 2)得 = 0 及 t 0 且 t=0 時(shí),有式( 1 2)可知:因?yàn)?0,所以 1) 定有 2 0 與 0。這個(gè)結(jié)果表明:對(duì)于兩向拉應(yīng)力的平面應(yīng)力狀態(tài),當(dāng) 的絕對(duì)值最大時(shí),則在這個(gè)方向上的應(yīng)變一定時(shí)正的,即一定是伸長變形。 又因?yàn)?0,所以必定有 -( t+ ) , 0。 遼寧科技學(xué)院本科生畢業(yè)設(shè)計(jì)(論文) 第 11頁 的變化范圍是 = =0 。當(dāng) = 時(shí), = 0, 也就是在 雙向等拉 力 狀態(tài)下 ,在 兩個(gè)拉應(yīng) 力方向 上產(chǎn) 生 數(shù) 值相同的伸 長 變形 ;在受 單向拉應(yīng) 力 狀態(tài)時(shí) , 當(dāng) =0 時(shí), =- /2,也就是說, 在受 單向拉應(yīng) 力 狀態(tài)下 其 變形 性 質(zhì) 與一般的 簡單 拉伸是完全一 樣 的 。 這種變形與受力情況,處于沖壓應(yīng)變圖中的 AOC 范圍內(nèi)(見圖 1 1);而在沖壓應(yīng)力圖中則處于 AOH 范圍內(nèi)(見圖 1 2)。 上述兩種沖壓情況,僅在最大應(yīng)力的方向上不同,而兩個(gè)應(yīng)力的性質(zhì)以及它們引起的變形都是一樣的。因此,對(duì)于各向同性的均質(zhì)材料,這兩種變形是完全相同的。 沖壓毛坯變形區(qū)受兩向壓應(yīng)力的作用,這種變形也分兩種情況分析,即 0 與 t0,即在板料厚度方向上的 應(yīng)變 是正的,板料增厚。 在 方向上的變形取決于 與 的數(shù)值:當(dāng) =2 時(shí), =0;當(dāng) 2 時(shí), 0。 這時(shí) 的變化范圍是 與 0 之間 。當(dāng) = 時(shí),是雙向等 壓 力狀態(tài)時(shí),故有 = 0 與 t0,即在板料厚度方向上的 應(yīng)變 是正的,即 為壓縮變形 ,板厚增大。 在 方向上的變形取決于 與 的數(shù)值:當(dāng) =2 時(shí), =0;當(dāng) 2 , 0。 這時(shí), 的數(shù)值只能在 0。這種變形與受力情況,處于沖壓應(yīng)變圖中的 GOL 范圍內(nèi)(見圖 1 1);而在沖壓應(yīng)力圖中則處于 DOE 范圍內(nèi)(見圖 1 2)。 沖壓 毛坯變形區(qū)受兩個(gè)異號(hào)應(yīng)力的作用,而且拉應(yīng)力的絕對(duì)值大于壓應(yīng)力的絕對(duì) 值。這種變形共有兩種情況,分別作如下分析。 1)當(dāng) 0, | |時(shí),由式( 1 2)可知:因 為 0, | |,所以一定有 2 - 0 及 0。 這個(gè)結(jié) 果表明:在異 號(hào) 的平面 應(yīng) 力 狀態(tài)時(shí) ,如果 絕對(duì) 值最大 應(yīng) 力是 拉應(yīng) 力 ,則在這個(gè)絕對(duì)值最大的拉應(yīng)力方向上應(yīng)變一定是正應(yīng)變,即是伸長變形。 又因?yàn)?0, | |,所以必定有 0 0, 0, | |時(shí),由式( 1 2)可知: 用與前項(xiàng)相同的方法分析可得 0。 即在異 號(hào)應(yīng) 力作用的平面 應(yīng) 力 狀態(tài)下 ,如果 絕對(duì)值最大 應(yīng) 力是 拉應(yīng) 力 ,則在這個(gè)方向上的應(yīng)變是 正的,是伸長變形;而在壓應(yīng)力 方向上的應(yīng)變是負(fù)的( 0, 0, 0, | |時(shí),由式( 1 2)可知:因 為 0, | |,所以一定有 2 - 0, 0, 即在 拉應(yīng) 力方向上的應(yīng)變 是正的, 是伸長變形。 這時(shí) 的變化范圍只能在 =- 與 =0 的范圍內(nèi) 。當(dāng) =- 時(shí), 0 0, 0, | |時(shí),由式( 1 2)可知: 用與前項(xiàng)相同的方法分析可得 0, 0, 0,而且 =- /2。這種變形情況處于沖壓應(yīng)變圖中的 DOE 范圍內(nèi)(見圖 1 1);而在沖壓應(yīng)力圖中則處于 BOC 范圍內(nèi)(見圖 1 2)。 這四種變形與相應(yīng)的沖壓成形方法之間是相對(duì)的,它們之間的對(duì)應(yīng)關(guān)系,用文字標(biāo)注在圖 1 1 與圖 1 2 上。 上述分析的四種變形情況,相當(dāng)于所有的平面應(yīng)力狀態(tài),也就是說這四種變形情況可以把全部的沖壓變形毫無遺漏地概括為兩大類別,即伸長類與壓縮類。 當(dāng)作用于沖壓毛坯變形區(qū)內(nèi)的拉應(yīng)力的絕對(duì)值最大時(shí),在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 園藝植物種子生產(chǎn)教學(xué)課件
- 企業(yè)內(nèi)部凝聚力培訓(xùn)課件
- 保健按摩師中級(jí)練習(xí)題庫及答案
- 養(yǎng)老院老人入住入住制度
- 養(yǎng)老院環(huán)境衛(wèi)生制度
- 《電子商務(wù)體系結(jié)構(gòu)》課件
- 敬老院衣柜改造合同
- 2024人力資源管理實(shí)習(xí)生實(shí)習(xí)期間安全與保險(xiǎn)協(xié)議3篇
- 2024年某地產(chǎn)公司關(guān)于住宅小區(qū)開發(fā)與建設(shè)合同
- 2025年眉山貨運(yùn)從業(yè)資格證考試題庫a2
- 2024年江蘇蘇州市事業(yè)單位專業(yè)化青年人才定崗特選444人歷年高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- 學(xué)校食堂輿情處置預(yù)案
- 2024年大學(xué)生信息素養(yǎng)大賽(省賽)考試題庫(含答案)
- 應(yīng)用語言學(xué)智慧樹知到答案2024年杭州師范大學(xué)
- Chinese Festivals (教學(xué)設(shè)計(jì))-2024-2025學(xué)年外研版(一起)英語五年級(jí)上冊(cè)
- 乙方和甲方對(duì)賭協(xié)議書范本
- 2024年人教版八年級(jí)數(shù)學(xué)(上冊(cè))期末試卷及答案(各版本)
- 安全先進(jìn)個(gè)人事跡材料(7篇)
- 高職院校開設(shè)人工智能通識(shí)課程的必要性探究
- 2025高考數(shù)學(xué)一輪復(fù)習(xí)-41.1-橢圓的概念及基本性質(zhì)【課件】
- 《觀滄?!贰肚镌~》《天凈沙. 秋思》群文閱讀教學(xué)設(shè)計(jì) 2023-2024學(xué)年統(tǒng)編版語文七年級(jí)上冊(cè)
評(píng)論
0/150
提交評(píng)論