已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ControlEngineeringPracticeembeddedVrancLjubljana,bNovaGoricaPolytechnic,NovaGorica,Sloveniaidenticationstepstoprovidereliableoperation.Thecontrollermonitorsandevaluatesthecontrolperformanceoftheclosed-loopsystem.Thecontrollerwasimplementedonaprogrammablelogiccontroller(PLC).Theperformanceisillustratedonaeldtestinindustrialapplications,assummarisedbelow:ARTICLEINPRESS/locate/conengpracC3Correspondingauthor.Tel.:+38614773994;1.Becauseofthediversityofreal-lifeproblems,asinglenonlinearcontrolmethodhasarelativelynarrow0967-0661/$-seefrontmatterr2005ElsevierLtd.Allrightsreserved.doi:10.1016/j.conengprac.2005.05.006fax:+38614257009.E-mailaddress:samo.gerksicijs.si(S.Gerksic).applicationforcontrolofpressureonahydraulicvalve.r2005ElsevierLtd.Allrightsreserved.Keywords:Controlengineering;Fuzzymodelling;Industrialcontrol;Model-basedcontrol;Nonlinearcontrol;Programmablelogiccontrollers;Self-tuningregulators1.IntroductionModerncontroltheoryoffersmanycontrolmethodstoachievemoreefcientcontrolofnonlinearprocessesthanprovidedbyconventionallinearmethods,takingadvantageofmoreaccurateprocessmodels(Bequette,1991;Henson&Seborg,1997;Murray-Smith&Johansen,1997).Surveys(Takatsu,Itoh,&Araki,1998;Seborg,1999)indicatethatwhilethereisaconsiderableandgrowingmarketforadvancedcon-trollers,relativelyfewvendorsofferturn-keyproducts.Excellentresultsofadvancedcontrolconcepts,basedonfuzzyparameterscheduling(Tan,Hang,&Chai,1997;Babuska,Oosterhoff,Oudshoorn,&Bruijn,2002),multiple-modelcontrol(Dougherty&Cooper,2003;Gundala,Hoo,&Piovoso,2000),andadaptivecontrol(Henson&Seborg,1994;Hagglund&Astrom,2000),havebeenreportedintheliterature.However,thereareseveralrestrictionsforapplyingthesemethodsdINEAd.o.o.,Ljubljana,SloveniaeComputerTechnologyInstitute,Athens,GreecefUniversityofChemicalTechnologyandMetallurgySofia,Sofia,BulgariaReceived23April2004;accepted15May2005AbstractThispaperpresentsaninnovativeself-tuningnonlinearcontrollerASPECT(advancedcontrolalgorithmsforprogrammablelogiccontrollers).Itisintendedforthecontrolofhighlynonlinearprocesseswhosepropertieschangeradicallyoveritsrangeofoperation,andincludesthreeadvancedcontrolalgorithms.Itisdesignedusingtheconceptsofagent-basedsystems,appliedwiththeaimofautomatingsomeofthecongurationtasks.Theprocessisrepresentedbyasetoflow-orderlocallinearmodelswhoseparametersareidentiedusinganonlinelearningprocedure.Thisprocedurecombinesmodelidenticationwithpre-andpost-cUniversityofLjubljana,FacultyofElectricalEngineering,Ljubljana,SloveniaAdvancedcontrolalgorithmslogiccontrollerSamoGerksica,C3,GregorDolanca,DamirSasoBlazicc,IgorSkrjancc,ZoranMarinsRobertKinge,MinchoHadjiskiaJozefStefanInstitute,inaprogrammableica,JusKocijana,b,StankoStrmcnika,ekd,MihaBozicekd,AnnaStathakie,f,KostaBoshnakovfSlovenia()friendmaticindustfromling,procedcontrollermonitorstheresultingcontrolperformanceARTICLEINPRESSanonlinearprocessmodel.Themodelisobtainedoperatingprocesssignalsbyexperimentalmodel-usinganovelonlinelearningprocedure.ThisThefromforimplementationonPLCoropencontrollerrialhardwareplatforms.controllerparametersareautomaticallytunedfeatuadaptedssioningofthecontrollerissimpliedbyauto-experimentationandtuning.AdistinguishingreofthecontrolleristhatthealgorithmsaremetecommiTheASPECTcontrollerisanefcientanduser-lyengineeringtoolforimplementationofpara-r-schedulingcontrolintheprocessindustry.Theused,thesensorreadings,specichardwareplatformsareetc.isdemandedtoeldofapplication.Therefore,moreexiblemethodsoratoolboxofmethodsarerequiredinindustry.2.Newmethodsareusuallynotavailableinaready-to-useindustrialform.Customdesignrequiresconsider-ableeffort,timeandmoney.3.Thehardwarerequirementsarerelativelyhigh,duetothecomplexityofimplementationandcomputationaldemands.4.Thecomplexityoftuning(Babuskaetal.,2002)andmaintenancemakesthemethodsunattractivetononspecialisedengineers.5.Thereliabilityofnonlinearmodellingisofteninquestion.6.Manynonlinearprocessescanbecontrolledusingthewell-knownandindustriallyprovenPIDcontroller.Aconsiderabledirectperformanceincrease(nancialgain)isdemandedwhenreplacingaconventionalcontrolsystemwithanadvancedone.Themain-tenancecostsofaninadequateconventionalcontrolsolutionmaybelessobvious.Theaimofthisworkistodesignanadvancedcontrollerthataddressessomeoftheaforementionedproblemsbyusingtheconceptsofagent-basedsystems(ABS)(Wooldridge&Jennings,1995).Themainpurposeistosimplifycontrollercongurationbypartialautomationofthecommissioningprocedure,whichistypicallyperformedbythecontrolengineer.ABSsolvedifcultproblemsbyassigningtaskstonetworkedsoftwareagents.Thesoftwareagentsarecharacterisedbypropertiessuchasautonomy(operationwithoutdirectinterventionofhumans),socialability(interactionwithotheragents),reactivity(perceptionandresponsetotheenvironment),pro-activeness(goal-directedbe-haviour,takingtheinitiative),etc.ThisworkdoesnotaddressissuesofABStheory,butrathertheapplicationofthebasicconceptsofABStotheeldofprocesssystemsengineering.Inthiscontext,anumberoflimitshavetobeconsidered.Forexample:initiativeisrestricted,ahighdegreeofreliabilityandpredictability,insightintotheproblemdomainislimitedS.Gerksicetal./ControlEngineerin2ureisbasedonmodelidenticationusingtheandreactstodetectedirregularities.Thecontrollercomprisestherun-timemodule(RTM)andthecongurationtool(CT).TheRTMrunsonaPLC,performingallthemainfunctionalityofreal-timecontrol,onlinelearningandcontrolperformancemonitoring.TheCT,usedonapersonalcomputer(PC)duringtheinitialcongurationphase,simpliesthecongurationprocedurebyprovidingguidanceanddefaultparametervalues.Theoutlineofthepaperisasfollows:Section2presentsanoverviewoftheRTMstructureanddescribesitsmostimportantmodules;Section3givesabriefdescriptionoftheCT;andnally,Section4describestheapplicationofthecontrollertoapilotplantwhereitisusedforcontrolofthepressuredifferenceonahydraulicvalveinavalvetestapparatus.2.Run-TimeModuleTheRTMoftheASPECTcontrollercomprisesasetofmodules,linkedintheformofamulti-agentsystem.Fig.1showsanoverviewoftheRTManditsmainmodules:thesignalpre-processingagent(SPA),theonlinelearningagent(OLA),themodelinformationagent(MIA),thecontrolalgorithmagent(CAA),thecontrolperformancemonitor(CPM),andtheoperationsupervisor(OS).2.1.Multi-facetedmodel(MFM)TheASPECTcontrollerisbasedonthemulti-facetedmodelconceptproposedbyStephanopoulus,Henning,andLeone(1990)andincorporatesseveralmodelformsrequiredbytheCAAandtheOLA.Specically,theMFMincludesasetoflocalrst-andsecond-orderlocallearningapproach(Murray-Smith&Johansen,1997,p.188).Themeasurementdataareprocessedbatch-wise.Additionalstepsareperformedbeforeandafteridenticationinordertoimprovethereliabilityofmodelling,comparedtoadaptivemethodsthatuserecursiveidenticationcontinuously(Hagglund&As-trom,2000).Thenonlinearmodelcomprisesasetoflocallow-orderlinearmodels,eachofwhichisvalidoveraspeciedoperatingregion.Theactivelocalmodel(s)isselectedusingaconguredschedulingvariable.Thecontrollerisspecicallydesignedforsingle-input,single-outputprocessesthatmayincludeameasureddis-turbanceusedforfeed-forward.Additionally,theapplicationrangeofthecontrollerdependsontheselectedcontrolalgorithm.Amodularstructureofthecontrollerpermitsuseofarangeofcontrolalgorithmsthataremostsuitablefordifferentprocesses.ThegPractice()discrete-timelinearmodelswithtimedelayandoffset,ARTICLEINPRESSS.Gerksicetal./ControlEngineerinwhicharespeciedbyagivenschedulingvariables(k).Themodelequationofrstorderlocalmodelsisyk1C0a1;jykb1;jukC0dujc1;jvkC0dvjrj,(1)whilethemodelequationofsecondordermodelsisyk1C0a1;jykC0a2;jykC01b1;jukC0dujb2;jukC01C0dujc1;jvkC0dvjc2;jvkC01C0dvjrj,2wherekisthediscretetimeindex,jisthenumberofthelocalmodel,y(k)istheprocessoutputsignal,u(k)istheprocessinputsignal,v(k)istheoptionalmeasureddisturbancesignal(MD),duisthedelayinthemodelbranchfromutoy,dvisthedelayinthemodelbranchfromvtoy,andai,j,bi,j,ci,jandrjaretheparametersofthejthlocalmodel.ThesetoflocalmodelscanbeinterpretedasaTakagiSugenofuzzymodel,whichinthecaseofasecondordermodelcanbeexpressedintheFig.1.Run-timemodulegPractice()3followingform:yk1C0Xmj1bjka1;jykC0Xmj1bjka2;jykC01Xmj1bjkb1;jukC0dujXmj1bjkb2;jukC01C0dujXmj1bjkc1;jnkC0dnjXmj1bjkc2;jnkC01C0dnjXmj1bjkrj,3wherebj(k)isthevalueofthemembershipfunctionofthejthlocalmodelatthecurrentvalueoftheschedulingvariables(k).Normalisedtriangularmembershipfunc-tionsareused,asillustratedinFig.2.overview.ARTICLEINPRESSTheschedulingvariables(k)iscalculatedusingcoefcientskr,ky,ku,andkv,usingtheweightedsumskkrrkkyykkuukC01kvvk.(4)Thecoefcientsareconguredbytheengineeraccord-ingtothenatureoftheprocessnonlinearity.2.2.OnlineLearningAgent(OLA)TheOLAscansthebufferofrecentreal-timesignals,preparedbytheSPA,andestimatestheparametersofthelocalmodelsthatareexcitedbythesignals.ThemostrecentlyderivedparametersaresubmittedtotheMIAonlywhentheypassthevericationtestandareprovedtobebetterthantheexistingset.TheOLAisinvokedupondemandfromtheOSorautonomously,whenanintervaloftheprocesssignalswithsufcientexcitationisavailableforprocessing.Itprocessesthesignalsbatch-wiseandusingthelocallearningapproach.Anadvantageofthebatch-wiseconceptisthatthedecisiononwhethertoadaptthemodelisnotperformedinreal-timebutfollowingadelaythatallowsforinspectionoftheidenticationresultbeforeitisapplied.Thus,bettermeansforcontroloverdataselectionisprovided.Aproblemofdistributionofthecomputationtimerequiredforidenticationappearswithbatch-wiseprocessingofdata(opposedtotheonlinerecursiveprocessingthatistypicallyusedinadaptivecontrollers).Thisproblemisresolvedusingamulti-taskingoperationsystem.SincetheOLAtypicallyrequiresconsiderablyFig.2.FuzzymembershipfunctionsoflocalmodelsintheMFM.S.Gerksicetal./ControlEngineerin4morecomputationthanthereal-timecontrolalgorithm,itrunsinthebackgroundasalow-prioritytask.Thefollowingprocedure,illustratedinFig.3,isexecutedwhentheOLAisinvoked.2.2.1.CopysignalbufferThebufferofthereal-timesignalsismaintainedbytheSPA.WhentheOLAisinvoked,therelevantsectionofthebufferiscopiedforfurtherprocessing.2.2.2.ExcitationcheckAquickexcitationcheckisperformedatthestart,sothatprocessingofthesignalsisperformedonlywhentheycontainexcitation.Ifthestandarddeviationsofthesignalsr(k),y(k),u(k),andv(k)intheactivebufferarebelowtheirthresholds,theexecutioniscancelled.2.2.3.CopyactiveMFMfromMIATheonlinelearningprocedurealwayscomparesthenewlyidentiedlocalmodelswiththeprevioussetofparameters.Therefore,theactiveMFMiscopiedfromtheMIAwhereitisstored.Adefaultsetofmodelparametersisusedforthelocalmodelsthathavenotyetbeenidentied(seeSection2.3).2.2.4.SelectlocalmodelsAlocalmodelisselectedifthesumofitsmembershipfunctionsbj(k)overtheactivebuffernormalisedbytheactivebufferlengthexceedsagiventhreshold.Onlytheselectedlocalmodelsareincludedinfurtherprocessing.2.2.5.IdentificationThelocalmodelparametersareidentiedusingthefuzzyinstrumentalvariables(FIV)identicationmethoddevelopedbyBlazicetal.(2003).Itisanextensionofthelinearinstrumentalvariablesidenticationprocedure(Ljung,1987)forthespeciedMFM,basedonthelocallearningapproach(Murray-Smith&Johansen,1997).Thelocallearningapproachisbasedontheassumptionthattheparametersofalllocalmodelswillnotbeestimatedin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024離婚雙方的共同債權債務處理合同
- 2024苗木種植與園林苗木種植基地規(guī)劃與建設勞務分包協(xié)議3篇
- 2024版活動場地使用合同范本
- 2025年度生態(tài)農業(yè)園承包合同格式規(guī)范4篇
- 2024鎳礦國際貿易法律事務咨詢服務合同3篇
- 2025年度新能源車輛代理記賬與補貼申請合同4篇
- 2025年度文化產(chǎn)業(yè)發(fā)展總經(jīng)理聘用協(xié)議3篇
- 《蒸汽鍋爐維護與管理》課件
- 2025年度個人二手房交易反擔保合同規(guī)范4篇
- 2025年度博物館展覽館日常保潔與文物保護合同4篇
- 2024年桂林中考物理試卷
- DL∕T 5362-2018 水工瀝青混凝土試驗規(guī)程
- (正式版)JC∕T 60023-2024 石膏條板應用技術規(guī)程
- DL-T5054-2016火力發(fā)電廠汽水管道設計規(guī)范
- (權變)領導行為理論
- 2024屆上海市浦東新區(qū)高三二模英語卷
- 家用電器可靠性與壽命預測研究
- 中考語文二輪復習:詩歌鑒賞系列之邊塞軍旅詩(知識點+方法+習題)
- 2024年智慧工地相關知識考試試題及答案
- 五年級上冊脫式計算練習300題及答案
- 健康產(chǎn)業(yè)園策劃方案
評論
0/150
提交評論