版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、等腰三角形三線合一 專題訓(xùn)練 姓名 例1:如圖,四邊形ABCD中,ABDC,BE、CE分別平分ABC、BCD,且點E在AD上。求證:BC=AB+DC。變1:如圖,ABCD,A90,AB2,BC3,CD1,E是AD邊中點。求證:CEBE。變2:如圖,四邊形ABCD中,ADBC,E是CD上一點,且AE、BE分別平分BAD、ABC. (1)求證:AEBE; (2)求證:E是CD的中點; (3)求證:AD+BC=AB.BCEAD 變3:ABC是等腰直角三角形 ,BAC=90,AB=AC.若D為BC的中點,過D作DMDN分別交AB、AC于M、N,求證:(1)DMDN。若DMDN分別和BA、AC延長線交于
2、M、N。問DM和DN有何數(shù)量關(guān)系。(1) 已知:如圖,AB=AC,E為AB上一點,F(xiàn)是AC延長線上一點,且BE=CF,EF交BC于點D求證:DE=DF(2)已知:如圖,AB=AC,E為AB上一點,F(xiàn)是AC延長線上一點,且,EF交BC于點D,且D為EF的中點求證:BE=CF利用面積法證明線段之間的和差關(guān)系1、如圖,在ABC中,AB=AC,P為底邊BC上的一點,PDAB于D,PEAC于E,CFAB于F,那么PD+PE與CF相等嗎? 變1:若P點在直線BC上運動,其他條件不變,則PD 、PE與CF的關(guān)系又怎樣,請你作圖,證明。1、已知等腰三角形的兩邊長分別為4、9,則它的周長為( )A 17 B 2
3、2 C 17或22 D 13根據(jù)等腰三角形的性質(zhì)尋求規(guī)律例1在ABC中,AB=AC,1=ABC,2=ACB,BD與CE相交于點O,如圖,BOC的大小與A的大小有什么關(guān)系? 若1=ABC,2=ACB,則BOC與A大小關(guān)系如何?若1=ABC,2=ACB,則BOC與A大小關(guān)系如何?會用等腰三角形的判定和性質(zhì)計算與證明例2如圖,等腰三角形ABC中,AB=AC,一腰上的中線BD將這個等腰三角形周長分成15和6兩部分,求這個三角形的腰長及底邊長利用等腰三角形的性質(zhì)證線段相等例3如圖,P是等邊三角形ABC內(nèi)的一點,連結(jié)PA、PB、PC,以BP為邊作PBQ=60,且BQ=BP,連結(jié)CQ (1)觀察并猜想AP與
4、CQ之間的大小關(guān)系,并證明你的結(jié)論(2)若PA:PB:PC=3:4:5,連結(jié)PQ,試判斷PQC的形狀,并說明理由例1、等腰三角形底邊長為5cm,腰上的中線把三角形周長分為差是3cm的兩部分,則腰長為( )A、2cm B、8cm C、2cm或8cm D、不能確定ABC例2、已知AD為ABC的高,AB=AC,ABC周長為20cm,ADC的周長為14cm,求AD的長。例3、如圖,已知BC=3,ABC和ACB的平分線相交于點O,OEAB,OFAC,求OEF 的周長。ABFCOE例4、如圖,已知等邊ABC中,D為AC上中點,延長BC到E,使CE=CD,連接DE,試說明DB=DE。ABCDE例5、等腰三角
5、形一腰上的高與底邊的夾角為450,則這個三角形是( )A、銳角三角形 B、鈍角三角形 C、等邊三角形 D、等腰直角三角形例6、(1)等腰三角形的腰長為10,底邊上的高為6,則底邊的長為 。 (2)直角三角形的周長為12cm,斜邊的長為5cm,則其面積為 ; (3)若直角三角形三邊為1,2,c,則c= 。例7、下列說法:若在ABC中a2+b2c2,則ABC不是直角三角形;若ABC是直角三角形,C=900,則a2+b2=c2;若在ABC中,a2+b2=c2,則C=900;若兩直角邊的平方和等于斜邊的平方,可以判定這個三角形是直角三角形。正確的有 (把你認為正確的序號填在橫線上)。例8、正三角形AB
6、C所在平面內(nèi)有一點P,使得PAB、PBC、PCA都是等腰三角形,則這樣的P點有()(A)1個(B)4個(C)7個(D)10個例9. 四邊形ABCD中,AB=BC,ABC=CDA=90,BEAD于點E,且四邊形ABCD的面積為8,則BE=()A2B3CD例10. 已知ABC為正三角形,P為其內(nèi)一點,且AP=4,BP=,CP=2,則ABC 的邊長為 ( )(A) (B) (C)4 (D)三鞏固練習(xí)1、已知等腰三角形的一邊等于5,另一邊等于9,求它的周長。2、在ABC中,AB=AC,B=400,則A= 。3、等腰三角形的一個內(nèi)角是700,則它的頂角為 。4、有一個內(nèi)角為40的等腰三角形的另外兩個內(nèi)角
7、的度數(shù)為 .140呢 DCBA5、如圖,在RtABC中,C105o,直線BD交AC于D,把直角三角形沿著直線BD翻折,點C恰好落在斜邊AB上,如果ABD是等腰三角形,那么A等于 ( )(A)40o (B) 30o (C) 25o (D )15o6、若ABC三邊分別為a、b、c,且滿足a2+b2+c2+50=6a+8b+10c,則ABC的形狀為( )(A)等腰三角形 (B)直角三角形 (C)等腰直角三角形 (D)等邊三角形7、判定兩個等腰三角形全等的條件可以是 ( )。A、有一腰和一角對應(yīng)相等 B、有兩邊對應(yīng)相等 C、有頂角和一個底角對應(yīng)相等 D、有兩角對應(yīng)相等8、等腰三角形一腰上的高線與底邊的
8、夾角等于( )A、頂角 B、底角 C、頂角的一半 D、底角的一半9、在等腰三角形ABC中,A與B度數(shù)之比為52,則A的度數(shù)是( )A、100 B、75 C、150 D、75或10010、如圖,P、Q是ABC邊BC上的兩點,且QCAPAQBPPQ,則BAC( )A、1250 B、1300 C、900 D、120011、如圖,ABC中,ABAC,BD、CE為中線,圖中共有等腰三角形( )個。10題圖11題圖12題圖A、4個 B、6個 C、3個 D、5個 12、如圖,ABAC,AEEC,ACE280,則B的度數(shù)是( ) A、600 B、700 C、760 D、45013、如圖是一個等邊三角形木框,甲
9、蟲P在邊框AC上(端點A、C除外),設(shè)甲蟲P到另外兩邊距離之和為d,等邊三角形ABC的高為h,則d與h的大小關(guān)系是( ) 【解題方法指導(dǎo)】 例1. 已知,如圖,ABACCD,求證:B2D 例2. 已知,如圖,ABC是等邊三角形,AD/BC,ADBD,BC6,求AD的長。 【考點指要】 等腰三角形、等邊三角形及含30角的直角三角形是應(yīng)用非常廣泛的圖形,因此,在中考試題中經(jīng)常以證明題或計算題頻頻出現(xiàn),而且經(jīng)常把它們結(jié)合在一道題中加以應(yīng)用,雖然題目的難度不是很大,但也要善于分析,找出圖形中有關(guān)的性質(zhì)。【典型例題分析】 例1. (2005年 蘇州) 如圖,等腰三角形ABC的頂角為120,腰長為10,則
10、底邊上的高AD_。 例2. 已知,如圖,ABC中,C90,AB的垂直平分線交AB于E,交AC于D,AD8,A30,求CD的長。 例3. 已知,如圖,ABC是等邊三角形,E是AB上一點,D是AC上一點,且AECD,又BD與CE交于點F,試求BFE的度數(shù)?!揪C合測試】 1. 已知,如圖,ABAC,ABDACD,求證:DBDC 2. 已知,如圖,D、E是BC上兩點,ABAC,ADAE,求證:BDCE 3. 已知,如圖,ABC中,DE/BC,ABAC,求證:ADAE 4. 已知,如圖,ABC中,ABAC,D是AB上一點,E是AC延長線上一點,DE交BC于F,又BDCE,求證:DFEF 5. 已知,如圖
11、,D是BC上一點,ABC、BDE都是等邊三角形,求證:ADCE 6. 已知,如圖,ABC中,B90,AC的垂直平分線交AC于D,交BC于E,又C15,EC10,求AB的長。例6、如圖11,在ABC中,A90,ABAC,D為BC邊中點,E、F分別在AB、AC上,且DEDF,求證:AEAF是一個定值.證明:連接AD, ABAC,D為BC中點,ADBC,BAC90,ABAC, BC45,BAD45,CAD45,ADBDCD,EDF90,EDAADF90,又由ADBC得BDEADE90,BDEADF,在BDE和ADF中,BDAF,BDAD,BDEADF,BDEADF,BEAF,AEAFAEBEAB(定
12、值).思考:四邊形AEDF的面積是否也是定值呢?為什么?例4、如圖9,已知AD為ABC的高,E為AC上一點,BE交AD于F,且有BFAC,F(xiàn)DCD,你認為BE與AC之間有怎樣的位置關(guān)系?你能證明它嗎?證明:線段BEAC,理由如下:ADBC,ADBADC90,F(xiàn)BDBFD90, 在RtBDF和RtADC中,BFAC,F(xiàn)DCD,RtBDFRtADC,BFDC,F(xiàn)BDC90,BEC180(FBDC)1809090,即BEAC.例5、如圖10,在ABC中,ACB90,ACBC,M是AB上一點,求證:.證明:過C作CDAB于點D,ACB90,ACBC,CDAB,AB45,ACDBCD45,AACD,BB
13、CD,ADBD,BDCD,即ADBDCD,CDAB,.思考:請同學(xué)們試試用另外的方法來證明本題.例1、如圖5,在ABC中,ABAC,點O在ABC內(nèi),OBOC,求證:AOBC.證明:延長AO交BC于點D,ABAC,OBOC,OAOA,ABOACO,BAOCAO,即BADCAD,ADBC,即AOBC.例2、如圖6,在等邊ABC中,D、E分別在邊BC、BA的延長線上,且AEBD,求證:CEDE.證明:過E作EFCD于點F,ABC是等邊三角形,B60,BEF30,BE2BF,即BAAEBCBD2BCCD2(BCCF),CD2CF, CFDF,在CEF和DEF中,CFDF,CFEDFE90,EFEF,C
14、EFDEF,CEDE.例3、如圖7,已知在ABC中,ABAC,P為底邊BC上任意一點,PDAB于點D,PEAC于點E,求證:PDPE是一個定值.解:連接AP,過點C作CFAB于點F,由,得:,即,(定值).說明:本例的結(jié)論可用文字語言敘述為:等腰三角形底邊上一點到兩腰的距離之和等于腰上的高.拓展:如果點P不是在邊BC上,而是在BC的延長線上,其它條件保持不變,那么PD與PE之間又有怎樣的關(guān)系呢?解:連接AP,過點C作CFAB于點F,(如圖8)由,得:,即,(定值).即,當點P在BC延長線上時,PD與PE之差為一定值.基礎(chǔ)訓(xùn)練:1、填空題:(1)等腰三角形中,如果底邊長為6,一腰長為8,那么周長
15、是 。(2)如果等腰三角形有一邊長是6,另一邊長是8,那么它的周長是 ;如果等腰三角形的兩邊長分別是4、8,那么它的周長是 。(3)等腰三角形的對稱軸最多有 條。2、填空題:(1)如果ABC是等腰三角形,那么它的邊長(或周長)可以是( )A、三條邊長分別是5,5,11 B、三條邊長分別是4,4,8C、周長為14,其中兩邊長分別是4,5 D、周長為24,其中兩邊長分別是6,12(2)等腰三角形一邊長為2,周長為5,那么它的腰長為( )A、3 B、2 C、1.5 D、2或1.53、已知等腰三角形的腰長是底邊的3倍,周長為35cm,求等腰三角形各邊的長。4、已知:如圖,AD平分BAC,AB=AC,請
16、你說明DBC是等腰三角形。ABCDx+2y=43x+y=75、已知等腰三角形的底邊和一腰長是方程組 的解,求這個三角形的各邊長。(1)等腰三角形的頂角平分線、 、 互相重合。(2)等腰三角形有一個角是120,那么其他兩個角的度數(shù)是 和 。(3)ABC中,A=B=2C,那么C= 。(4)在等腰三角形中,設(shè)底角為x,頂角為y,則用含x的代數(shù)式表示y,得y= ;用含y的代數(shù)式表示x,得x= 。 2、選擇題:(1)等腰三角形的一個外角為140,那么底角等于( )A、40 B、100 C、70 D、40或70(2)等腰三角形一腰上的高線與底邊的夾角等于( )A、頂角 B、底角 C、頂角的一半 D、底角的
17、一半(3)在等腰三角形ABC中,A與B度數(shù)之比為52,則A的度數(shù)是( )A、100 B、75 C、150 D、75或100(4)等腰三角形ABC中,AB=AC,AD是角平分線,則“ADBC,BD=DC,B=C,BAD=CAD”中,結(jié)論正確的個數(shù)是( )A、4 B、3 C、2 D、13、如圖,已知ABC中,D在BC上,AB=AD=DC,C=20,求BAD。ABCDABCDE4、如圖,已知ABC中,點D、E在BC上,AB=AC,AD=AE。請說明BD=CE的理由。1、填空題:(1)在ABC中,A的相鄰?fù)饨鞘?10,要使ABC是等腰三角形,則B= 。(2)在一個三角形中,等角對 ;等邊對 。(3)如果等腰三角形底邊上的高線和腰上的高線相等,則它的各內(nèi)角的度數(shù)是 。ABCD(4)如圖,AB=AC,BD平分ABC,且C=2A, 則圖中等腰三角形共有 個。2、選擇題:如圖,在ABC中,AB=AC,BAC=108,ADB=72,ABCDEDE平分ADB,則圖中等腰三角形的個數(shù)是( )A、3 B、4 C、5 D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合伙協(xié)議書簽訂時的法律審查
- 2024年黃沙石子供貨合同范本
- 專業(yè)承包工地食堂合同書模板
- 合作經(jīng)營生意合同協(xié)議
- 800字代辦委托協(xié)議范本
- 房產(chǎn)按揭貸款借款協(xié)議示例
- 咖啡店外賣服務(wù)合同
- 2024年二手車購買協(xié)議格式
- 建筑項目監(jiān)理合同樣本
- 個人酒店承包經(jīng)營協(xié)議書2024年
- 2024-2030年手機游戲行業(yè)市場深度分析及前景趨勢與投資研究報告
- GB/T 20279-2024網(wǎng)絡(luò)安全技術(shù)網(wǎng)絡(luò)和終端隔離產(chǎn)品技術(shù)規(guī)范
- 2024年湖南煙草專賣局招249人考試高頻難、易錯點500題模擬試題附帶答案詳解
- 生活飲用水、公共場所衛(wèi)生管理系列國家強制性標準解讀答案-2024年全國疾控系統(tǒng)“大學(xué)習(xí)”活動
- 質(zhì)量管理體系過程方法和風(fēng)險思維專業(yè)解讀與應(yīng)用之7:5 領(lǐng)導(dǎo)作用-5.3組織的崗位、職責(zé)和權(quán)限(雷澤佳編制-2024B1)
- 地面找平專項施工方案
- 2024年中考歷史真題(廣東省卷)解讀
- 2024-2030年中國財稅服務(wù)行業(yè)市場深度調(diào)研及發(fā)展前景與投資研究報告
- 第二次月考卷-2024-2025學(xué)年統(tǒng)編版語文六年級上冊
- 急診預(yù)檢分診技巧
- “雙減”背景下小學(xué)數(shù)學(xué)作業(yè)的創(chuàng)新設(shè)計方案六篇樣本
評論
0/150
提交評論