同濟(jì)大學(xué)高數(shù)上冊(cè)知識(shí)點(diǎn)_第1頁(yè)
同濟(jì)大學(xué)高數(shù)上冊(cè)知識(shí)點(diǎn)_第2頁(yè)
同濟(jì)大學(xué)高數(shù)上冊(cè)知識(shí)點(diǎn)_第3頁(yè)
同濟(jì)大學(xué)高數(shù)上冊(cè)知識(shí)點(diǎn)_第4頁(yè)
同濟(jì)大學(xué)高數(shù)上冊(cè)知識(shí)點(diǎn)_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高等數(shù)學(xué)(上)知識(shí)點(diǎn)高等數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)1、2、3、4、函數(shù)與極限函數(shù)函數(shù)定義及性質(zhì)(有界性、單調(diào)性、奇偶性、周期性);反函數(shù)、復(fù)合函數(shù)、函數(shù)的運(yùn)算;初等函數(shù):幕函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、反三角函數(shù)、雙曲函 數(shù)、反雙曲函數(shù);函數(shù)的連續(xù)性與間斷點(diǎn);f(X) X、 lim f(x)= f(Xo)函數(shù)f(X)在0連續(xù)V A XTXo第一類:左右極限均存在.可去間斷點(diǎn)、跳躍間斷點(diǎn)J第二類:左右極限、至少有一個(gè)不存在.無窮間斷點(diǎn)、振蕩間斷點(diǎn)5、閉區(qū)間上連續(xù)函數(shù)的性質(zhì):有界性與最大值最小值定理、零點(diǎn)定理、介值定 理及其推論.(二)極限 定義 數(shù)列極限lim Xn = aunT函數(shù)極限lim f(X

2、)= Au 丁 0, 36 0, wX,當(dāng)0 JxXTXo間斷點(diǎn)1、1)2)v&0,3Nn,v nN, Xn- av 呂f(xj) = lim f(x)左極限:XTX0-lim f(X)= A 存在- XTX0極限存在準(zhǔn)則 夾逼準(zhǔn)則:1) y 蘭 Xn 蘭 Zn ( n 2 n。)lim yn 二 lim zn 二 a2) nn2)3、2、1)1)2)Th1第1頁(yè)共右極限:f(xf(x;)-Xo| 0,則第3頁(yè)共10頁(yè)高等數(shù)學(xué)(上)知識(shí)點(diǎn)2、a)b)c)f(X)單調(diào)增加;則若f (X)V 0,則f(X)單調(diào)減少.極值及其判定定理:.必要條件:f(X)在Xo可導(dǎo),若Xo為f(x)的極值點(diǎn),則fg

3、-0.第一充分條件:f(X)在Xo的鄰域內(nèi)可導(dǎo),且f(Xo) = 0,則若當(dāng) X*0時(shí),f(x)0,當(dāng)XAXo時(shí),fO)0,則Xo為極大值點(diǎn);若 當(dāng)Xf時(shí),fX)0,當(dāng)XAXo時(shí),r(x)A0,則Xo為極小值點(diǎn); 若在Xo的兩側(cè)f(X)不變號(hào),則Xo不是極值點(diǎn).第二充分條件:f(X)在Xo處二階可導(dǎo),且f(Xo)=0, f(Xo0, 則若f “(Xo) 0,則Xo為極小值點(diǎn).Xo3、凹凸性及其判斷,拐點(diǎn)I上的圖形是凸的.f(x)在a,b上連續(xù),在(a,b)上有一階、二階導(dǎo)數(shù),則 (a,b),f (X)0,則f(x)在a,b上的圖形是凹的; (a,b), f (x) V 0,則f(X)在a,b上

4、的圖形是凸的.f()VX1,XI, f(4) 1dx匕(X - a)qb dxa (b - x)q(b-a)1 1 q2)六、定積分的應(yīng)用(一)平面圖形的面積b1、直角坐標(biāo):A = Jaf2(x) - f1(x)dx1 P 222、極坐標(biāo):AH)(訕p=血(e)ap=厲(日)(二)體積1、旋轉(zhuǎn)體體積:x軸旋轉(zhuǎn)而成的旋轉(zhuǎn)體的體a)曲邊梯形 y= f (x),x = a,x = b,x 軸,高等數(shù)學(xué)(上)知識(shí)點(diǎn)第9頁(yè)共10頁(yè)積:Vxb)曲邊梯形積:Vyb 2=J 兀f 2(x)dxay = f(X), X = a,x = b, X軸,繞y軸旋轉(zhuǎn)而成的旋轉(zhuǎn)體的體b=J 2兀xf (x)dxa2、平行

5、截面面積已知的立體: V(三)弧長(zhǎng)(柱殼法)bf A(x)dxa1、直角坐標(biāo):2、參數(shù)方程:3、s極坐標(biāo):=jb J1 + f O)】2dx=f J(t) 2 + k (t) 2dtJjpe)2 +)2d0七、微分方程(一)概念1、微分方程:表示未知函數(shù)、未知函數(shù)的導(dǎo)數(shù)及自變量之間關(guān)系的方程階:微分方程中所出現(xiàn)的未知函數(shù)的最高階導(dǎo)數(shù)的階數(shù) .2、解:使微分方程成為恒等式的函數(shù).通解:方程的解中含有任意的常數(shù),且常數(shù)的個(gè)數(shù)與微分方程的階數(shù)相同 特解:確定了通解中的任意常數(shù)后得到的解.(二)變量可分離的方程g(y)dy = f (x)dx,兩邊積分(三)齊次型方程dx x,設(shè)乎=2或dy y,設(shè)(

6、四)一階線性微分方程字+P(X)廠 Q(x)dx=yx,則xV =/ g(y)dy = J f (x)dxy,則 dydy 丄 du =u + x dxdx ;dx 亠 dv=v + ydy用常數(shù)變易法或用公式:第8頁(yè)共10頁(yè)fP (x)dxfP (x)dx1y 二 e F Q(x)e dx + C(五)可降階的高階微分方程1、y譏 f(x),八 f(x,y)2、3、yJ f(y,y)兩邊積分n次;(不顯含有y),令y p,則y、p ;“ dp y 二(不顯含有x),令y二P,則dy(六)線性微分方程解的結(jié)構(gòu) *小2是齊次線性方程的解,則C1% + C2%也是;2、*小2是齊次線性方程的線性無

7、關(guān)的特解,則 C1y C2y2是方程的通解;*y = C1y C2y y為非齊次方程的通解,其中y1 , y2為對(duì)應(yīng)齊次方程的*線性無關(guān)的解,y非齊次方程的特解.常系數(shù)齊次線性微分方程+ C二階常系數(shù)齊次線性方程:y py qy =01、3、(七)特征根通解實(shí)根1 2亠1X2Xy = Ge+ C2eP廠2 二-Ty = (G + C2x)er1X1,2 i卩y = eX(C1 cosP x+ C2 sin P x)特征方程:2 + Pr + q -O,特征根:1,2(八)常系數(shù)非齊次線性微分方程 yJ py+ qy = f(x) f(x) = e*Pm(x)1、0,不是特征根kn,雇一個(gè)單根*k /x設(shè)特解y =XeQm(X),其中2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論