2011版數(shù)學(xué)三考研大綱_第1頁
2011版數(shù)學(xué)三考研大綱_第2頁
2011版數(shù)學(xué)三考研大綱_第3頁
2011版數(shù)學(xué)三考研大綱_第4頁
2011版數(shù)學(xué)三考研大綱_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、全國碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱(2011版)教育部考試中心.考試性質(zhì)數(shù)學(xué)考試是為高等院校和科研院所招收工學(xué)、經(jīng)濟(jì)學(xué)、管理學(xué)碩士研究生而設(shè)置的具有選拔性質(zhì)的全國統(tǒng)一入學(xué)考試科目.其目的是科學(xué)、公平、有效地測試考生是否具備繼續(xù)攻讀碩士學(xué)位所需要的數(shù)學(xué)知識和能力,評價的標(biāo)準(zhǔn)是高等學(xué)校優(yōu)秀本科畢業(yè)生能達(dá)到的及格或及格以上水平,以利于各高等院校和科研院所擇優(yōu)選拔,確保碩士研究生的招生質(zhì)量.考查目標(biāo)要求考生比較系統(tǒng)地理解數(shù)學(xué)的基本概念和基本理論,掌握數(shù)學(xué)的基本方法,具備抽象思維能力、邏輯推理能力、空間想象能力、運算能力和綜合運用所學(xué)知識分析問題和解決問題的能力.試卷分類及使用專業(yè)根據(jù)工學(xué)、經(jīng)濟(jì)學(xué)、

2、管理學(xué)各學(xué)科、專業(yè)對碩士研究生入學(xué)所應(yīng)具備的數(shù)學(xué)知識和能力的不同要求,碩士研究生入學(xué)統(tǒng)考數(shù)學(xué)試卷分為3種,其中針對工學(xué)門類的為數(shù)學(xué)一、數(shù)學(xué)二,針對經(jīng)濟(jì)學(xué)和管理學(xué)門類的為數(shù)學(xué)三.招生專業(yè)須使用的試卷種類規(guī)定如下:一、須使用數(shù)學(xué)一的招生專業(yè)1.工學(xué)門類中的力學(xué)、機(jī)械工程、光學(xué)工程、儀器科學(xué)與技術(shù)、冶金工程、動力工程及工程熱物理、電氣工程、電子科學(xué)技術(shù)、信息與通信工程、控制科學(xué)與工程、計算機(jī)科學(xué)與技術(shù)、土木工程、水利工程、測繪科學(xué)與技術(shù)、交通運輸工程、船舶與海洋工程、航空宇航科學(xué)與技術(shù)、兵器科學(xué)與技術(shù)、核科學(xué)與技術(shù)、生物醫(yī)學(xué)工程等20個一級學(xué)科中所有的二級學(xué)科、專業(yè).2.授工學(xué)學(xué)位的管理科學(xué)與工程一

3、級學(xué)科.二、須使用數(shù)學(xué)二的招生專業(yè)工學(xué)門類中的紡織科學(xué)與工程、輕工技術(shù)與工程、農(nóng)業(yè)工程、林業(yè)工程、食品科學(xué)與工程等5個一級學(xué)科中所有的二級學(xué)科、專業(yè).三、須選用數(shù)學(xué)一或數(shù)學(xué)二的招生專業(yè)(由招生單位自定)工學(xué)門類中的材料科學(xué)與工程、化學(xué)工程與技術(shù)、地質(zhì)資源與地質(zhì)工程、礦業(yè)工程、石油與天然氣工程、環(huán)境科學(xué)與工程等一級學(xué)科中對數(shù)學(xué)要求較高二級學(xué)科、專業(yè)選用數(shù)學(xué)一,對數(shù)學(xué)要求較低的選用數(shù)學(xué)二.四、須使用數(shù)學(xué)三的招生專業(yè)1.經(jīng)濟(jì)學(xué)門類的各一級學(xué)科.2.管理學(xué)門類中的工商管理、農(nóng)林經(jīng)濟(jì)管理一級學(xué)科.3.授管理學(xué)學(xué)位的管理科學(xué)與工程一級學(xué)科.考試形式和試卷結(jié)構(gòu)一、 試卷滿分及考試時間各卷種試卷滿分均為150

4、分,考試時間為180分鐘.二、答題方式答題方式為閉卷、筆試.三、試卷內(nèi)容結(jié)構(gòu)分值比例 卷種考試內(nèi)容數(shù)學(xué)一數(shù)學(xué)二數(shù)學(xué)三高等數(shù)學(xué)(微積分) 56% 78% 56%線性代數(shù) 22% 22% 22%概率論與數(shù)理統(tǒng)計 22% 22%四、試卷題型結(jié)構(gòu)各卷種試卷題型結(jié)構(gòu)均為:單項選擇題 8小題 , 每小題 4 分 , 共 32 分 .填空題 6小題 , 每小題 4 分 , 共 24 分 .解答題(包括證明題) 9小題 , 共 94 分。.考試內(nèi)容和考試要求 數(shù)學(xué)三微積分一、函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)

5、及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無窮小量與無窮大量的概念及其關(guān)系 無窮小量的性質(zhì)及無窮小量的比較 極限的四則運算 極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個重要極限: 函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系.2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.5.了解數(shù)列極限和函數(shù)(包括左極限與右極限)的概念.6.了解

6、極限的性質(zhì)與極限存在的兩個準(zhǔn)則,掌握極限的四則運算法則,掌握利用兩個重要極限求極限的方法.7.理解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法,了解無窮大量的概念及其與無窮小量的關(guān)系.8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì).二、一元函數(shù)微分學(xué)考試內(nèi)容 導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線和法線 導(dǎo)數(shù)和微分的四則運算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)、反函數(shù)、隱函數(shù)的微分法 高階導(dǎo)數(shù) 一

7、階微分形式的不變性 微分中值定理 洛必達(dá)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性、拐點及漸進(jìn)線 函數(shù)圖形的描繪 函數(shù)的最大值與最小值 考試要求 1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程. 2. 掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運算法則及復(fù)合函數(shù)的求導(dǎo)法則,會求分段函數(shù)的導(dǎo)數(shù),會求反函數(shù)與隱函數(shù)的導(dǎo)數(shù). 3. 了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù). 4.了解微分的概念、導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會求函數(shù)的微分. 5.理解羅爾定理、拉格朗日中值定理,了解泰勒定理、柯

8、西中值定理,掌握這四個定理的簡單應(yīng)用. 6.會用用洛必達(dá)法則求極限. 7.掌握函數(shù)單調(diào)性的判別法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法和應(yīng)用. 8.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a ,b)內(nèi),設(shè)函數(shù)f(x)具有二階導(dǎo)數(shù).當(dāng)時,f(x)的圖形是凹的;當(dāng)時,f(x)的圖形是凸的),會求函數(shù)圖形的拐點和漸進(jìn)線.9.會描繪簡單函數(shù)的圖形.三、一元函數(shù)積分學(xué)考試內(nèi)容原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓萊布尼茲公式 不定積分和定積分的換元積分法與分部積分法 反常(廣義)積分 定積分的應(yīng)用

9、考試要求1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法與分部積分法.2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會求它的導(dǎo)數(shù),掌握牛頓萊布尼茲公式以及定積分的換元積分法和分部積分法.3. 會用定積分計算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會利用定積分求解簡單的經(jīng)濟(jì)應(yīng)用問題.4.了解反常積分的概念,會計算反常積分.四、多元函數(shù)微積分學(xué)考試內(nèi)容 多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)的偏導(dǎo)數(shù)的概念與計算 多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)的求導(dǎo)法 二階偏導(dǎo)

10、數(shù) 全微分 多元函數(shù)的極值和條件極值、最全大值和最小值 二重積分的概念、基本性質(zhì)和計算 無界區(qū)域上簡單的反常二重積分 考試要求 1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義. 2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì). 3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會求全微分,會求多元隱函數(shù)的偏導(dǎo)數(shù). 4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應(yīng)用問題.5.了解二重積分的概念與

11、基本性質(zhì),掌握二重積分的計算方法(直角坐標(biāo)、極坐標(biāo)),了解無界區(qū)域上較簡單反常二重積分并會計算.五、無窮級數(shù)考試內(nèi)容 常數(shù)項級數(shù)的收斂與發(fā)散的概念 收斂級數(shù)的和的概念 級數(shù)的基本性質(zhì)與收斂的必要條件 幾何級數(shù)與p級數(shù)及其收斂性 正項級數(shù)收斂性的判別法 任意項級數(shù)的絕對收斂與條件收斂 交錯級數(shù)與萊布尼茲定理 冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間) 和收斂域 冪級數(shù)的和函數(shù) 冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì) 簡單冪級數(shù)的和函數(shù)的求法 初等函數(shù)的冪級數(shù)展開式考試要求1.了解級數(shù)收斂與發(fā)散、收斂級數(shù)的和的概念.2.了解級數(shù)的基本性質(zhì)及級數(shù)收斂的必要條件,掌握幾何級數(shù)及p級數(shù)的收斂與發(fā)散的條件,掌握正項

12、級數(shù)收斂性的比較判別法和比值判別法.3.了解任意項級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關(guān)系,了解交錯級數(shù)的萊布尼茲判別法.4.會求冪函數(shù)收斂半徑、收斂區(qū)間及收斂域.5.了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的收斂連續(xù)性、逐項求導(dǎo)和逐項積分),會求簡單冪級數(shù)在其收斂區(qū)間內(nèi)的和函數(shù).6.了解 的麥克勞林展開式.六、常微分方程與差分方程考試內(nèi)容 常微分方程的基本概念 變量可分離的微分方程 齊次微分方程一階線性微分方程 線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理 二階常系數(shù)齊次線性微分方程及簡單的非齊次線性微分方程 差分與差分方程的概念 差分方程的通解與特解 一階常系數(shù)線性差分方程 微分方程的

13、簡單應(yīng)用 考試要求1.了解微分方程及其階、解、通解、初始條件和特解等概念.2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法.3.會解二階常系數(shù)齊次線性微分方程.4.了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)的二階常系數(shù)非齊次線性微分方程.5.了解差分與差分方程及其通解與特解等概念.6.了解一階常系數(shù)線性差分方程的求解方法.7.會用微分方程解決簡單的經(jīng)濟(jì)應(yīng)用問題.線性代數(shù) 一、行列式 考試內(nèi)容 行列式的概念和基本性質(zhì) 行列式按行(列)展開定理 考試要求 1.了解行列式的概念,掌握行列式的性質(zhì). 2.會應(yīng)用行列式的性質(zhì)和行列式按行

14、(列)展開定理計算行列式.二、矩陣考試內(nèi)容 矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算考試要求1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣的定義及性質(zhì),了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質(zhì).2.掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.4.了解矩陣的初等變換和

15、初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.5.了解分塊矩陣的概念,掌握分塊矩陣的運算法則.三、向量 考試內(nèi)容 向量的概念 向量的線性組合與線性表示 向量組的線性相關(guān)與線性無關(guān) 向量組的極大線性無關(guān)組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量的內(nèi)積 線性無關(guān)向量組的正交規(guī)范化方法 考試要求1.了解向量的概念,掌握向量的加法和數(shù)乘運算法則.2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無關(guān)等概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法.3.理解向量組的極大線性無關(guān)組的概念,會求向量組的極大線性無關(guān)組及秩.4.理解向量組

16、等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系.5.了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特方法.四、線性方程組考試內(nèi)容線性方程組的克萊姆法則 線性方程組有解和無解的判斷 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系 非齊次線性方程組的通解考試要求1.會用克萊姆法則解線性方程組.2.掌握非齊次線性方程組有解和無解的判定方法.3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念.5.掌握用初等行變換求解線性方程組的方法.五、矩陣的特征值和特征向量考

17、試內(nèi)容 矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值和特征向量及相似對角矩陣 考試要求 1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征的性質(zhì),掌握求矩陣特征值和特征向量的方法.2.理解矩陣相似的概念、掌握相似矩陣的性質(zhì),了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.3.掌握實對稱矩陣的特征值和特征向量的性質(zhì).六、二次型考試內(nèi)容二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性考試要求1.了解二次型

18、的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形.3.理解正定二次型、正定矩陣的概念,并掌握其判別法. 概率論與數(shù)理統(tǒng)計一、隨機(jī)事件和概率 考試內(nèi)容 隨機(jī)事件與樣本空間 事件的關(guān)系與運算 完備事件組 概率的概念 概率的基本性質(zhì) 古典概率 幾何概率 條件概率 概率的基本公式 事件的獨立性 獨立重復(fù)試驗 考試要求1.了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運算.2.理解概率、條件概率的概念,掌握概率的基本性質(zhì),會計算古典概率和幾何概率,掌握概率

19、的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯公式等.3.理解事件獨立性的概念,掌握用事件獨立性進(jìn)行概率計算,理解獨立重復(fù)試驗的概念,掌握計算有關(guān)事件概率的方法.二、隨機(jī)變量及其分布考試內(nèi)容隨機(jī)變量 隨機(jī)變量分布函數(shù)的概念及其性質(zhì) 離散型隨機(jī)變量的概率分布 連續(xù)型隨機(jī)變量的概率密度 常見隨機(jī)變量的分布 隨機(jī)變量函數(shù)的分布考試要求1.理解隨機(jī)變量的概念,理解分布函數(shù)的概念及性質(zhì),會計算與隨機(jī)變量相聯(lián)系的事件的概率.2.理解離散型隨機(jī)變量及其概率分布的概念,掌握0-1分布,二項分布 b(n,p)、幾何分布、超幾何分布、泊松分布及其應(yīng)用.3.掌握泊松定理的結(jié)論和應(yīng)用條件,會用泊松分布近似表示二

20、項分布.4.理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應(yīng)用,其中參數(shù)為的指數(shù)分布的概率密度為5.會求隨機(jī)變量函數(shù)的分布.三、多維隨機(jī)變量及其分布考試內(nèi)容多維隨機(jī)變量及其分布 二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布 二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度 隨機(jī)變量的獨立性和不相關(guān)性 常用二維隨機(jī)變量的分布 兩個及兩個以上隨機(jī)變量簡單函數(shù)的分布 考試要求1.理解多維隨機(jī)變量的分布函數(shù)的概念和基本性質(zhì).2.理解二維離散型隨機(jī)變量概率分布和二維連續(xù)型隨機(jī)變量的概率密度,掌握二維隨機(jī)變量的邊緣分布和條件分布.3.理解隨機(jī)變量的獨立性及不相關(guān)性的概念,掌握隨機(jī)變量相互獨立的條件,理解隨機(jī)變量的不相關(guān)性與獨立性的關(guān)系.4.掌握二維均勻分布和二維正態(tài)分布的概率密度,理解其中參數(shù)的概率意義.5.會根據(jù)兩個隨機(jī)變的聯(lián)合分布求其函數(shù)的分布,會根據(jù)多個相互獨立隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布.四、隨機(jī)變量的數(shù)字特征 考試內(nèi)容 隨機(jī)變量的數(shù)學(xué)期望(均

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論