常微分方程課后答案(第三版)_第1頁
常微分方程課后答案(第三版)_第2頁
常微分方程課后答案(第三版)_第3頁
常微分方程課后答案(第三版)_第4頁
常微分方程課后答案(第三版)_第5頁
免費預覽已結束,剩余1頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、習題1.21=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx 兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時,y=0原方程的通解為y= cex,x=0 y=1時 c=1特解為y= e.2. ydx+(x+1)dy=0 并求滿足初始條件:x=0,y=1的特解。 解:ydx=-(x+1)dy dy=-dx兩邊積分: -=-ln|x+1|+ln|c| y=另外y=0,x=-1也是原方程的解 x=0,y=1時 c=e特解:y=3= 解:原方程為:=dy=dx 兩邊積分:x(1+x)(1+y)=cx4. (1+x)ydx+(1-y)xdy=0 解:原方程

2、為: dy=-dx兩邊積分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。5(y+x)dy+(x-y)dx=0 解:原方程為: =-令=u 則=u+x 代入有:-du=dxln(u+1)x=c-2arctgu即 ln(y+x)=c-2arctg.6. x-y+=0 解:原方程為: =+-則令=u =u+ x du=sgnx dxarcsin=sgnx ln|x|+c7. tgydx-ctgxdy=0 解:原方程為:=兩邊積分:ln|siny|=-ln|cosx|-ln|c|siny= 另外y=0也是原方程的解,而c=0時,y=0.所以原方程的通解為sinycosx=c.8 +=0

3、 解:原方程為:=e2 e-3e=c.9.x(lnx-lny)dy-ydx=0 解:原方程為:=ln令=u ,則=u+ xu+ x=ulnuln(lnu-1)=-ln|cx|1+ln=cy.10. =e 解:原方程為:=eee=ce11 =(x+y) 解:令x+y=u,則=-1-1=udu=dxarctgu=x+carctg(x+y)=x+c12. =解:令x+y=u,則=-1 -1= u-arctgu=x+c y-arctg(x+y)=c.13. =解: 原方程為:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y-y)-dx+

4、x=c xy-y+y-x-x=c14: =解:原方程為:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(y+2y)-d(x+5x)=0 y+4y+x+10x-2xy=c.15: =(x+1) +(4y+1) +8xy 解:原方程為:=(x+4y)+3令x+4y=u 則=-=u+3=4 u+13u=tg(6x+c)-1tg(6x+c)=(x+4y+1).16:證明方程=f(xy),經變換xy=u可化為變量分離方程,并由此求下列方程:1) y(1+xy)dx=xdy2) = 證明: 令xy=u,則x+y= 則=-,有: =f(u)+1 du=

5、dx 所以原方程可化為變量分離方程。1) 令xy=u 則=- (1)原方程可化為:=1+(xy) (2)將1代入2式有:-=(1+u)u=+cx17.求一曲線,使它的切線坐標軸間的部分初切點分成相等的部分。解:設(x +y )為所求曲線上任意一點,則切線方程為:y=y(x- x )+ y 則與x軸,y軸交點分別為: x= x - y= y - x y 則 x=2 x = x - 所以 xy=c18.求曲線上任意一點切線與該點的向徑夾角為0的曲線方程,其中 = 。解:由題意得:y= dy= dx ln|y|=ln|xc| y=cx. = 則y=tgx 所以 c=1 y=x.19.證明曲線上的切線

6、的斜率與切點的橫坐標成正比的曲線是拋物線。 證明:設(x,y)為所求曲線上的任意一點,則y=kx 則:y=kx +c 即為所求。 acknowledgements my deepest gratitude goes first and foremost to professor aaa , my supervisor, for her constant encouragement and guidance. she has walked me through all the stages of the writing of this thesis. without her consistent

7、 and illuminating instruction, this thesis could not havereached its present form. second, i would like to express my heartfelt gratitude to professor aaa, who led me into the world of translation. i am also greatly indebted to the professors and teachers at the department of english: professor dddd

8、, professor ssss, who have instructed and helped me a lot in the past two years. last my thanks would go to my beloved family for their loving considerations and great confidence in me all through these years. i also owe my sincere gratitude to my friends and my fellow classmates who gave me their h

9、elp and time in listening to me and helping me work out my problems during the difficult course of the thesis. my deepest gratitude goes first and foremost to professor aaa , my supervisor, for her constant encouragement and guidance. she has walked me through all the stages of the writing of this t

10、hesis. without her consistent and illuminating instruction, this thesis could not havereached its present form. second, i would like to express my heartfelt gratitude to professor aaa, who led me into the world of translation. i am also greatly indebted to the professors and teachers at the department of english: professor dddd, professor ssss, who have instructed and helped me a lot in the past two years. last my thanks would go to my beloved family for their loving considerations and great confidence in me all through these years. i also owe my sincere gratitu

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論