機(jī)械 外文翻譯 外文文獻(xiàn) 英文文獻(xiàn) 直流電動(dòng)機(jī)調(diào)速控制_第1頁(yè)
機(jī)械 外文翻譯 外文文獻(xiàn) 英文文獻(xiàn) 直流電動(dòng)機(jī)調(diào)速控制_第2頁(yè)
機(jī)械 外文翻譯 外文文獻(xiàn) 英文文獻(xiàn) 直流電動(dòng)機(jī)調(diào)速控制_第3頁(yè)
機(jī)械 外文翻譯 外文文獻(xiàn) 英文文獻(xiàn) 直流電動(dòng)機(jī)調(diào)速控制_第4頁(yè)
機(jī)械 外文翻譯 外文文獻(xiàn) 英文文獻(xiàn) 直流電動(dòng)機(jī)調(diào)速控制_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、speed control of dc motorabstract conditioning system is characterized in that output power to maintain stability. different speed control system can use a different brake system, high starting and braking torque, quick response and quick adjustment range of degree requirements of dc drive system, t

2、he use of the electric braking mode. depends on the speed control of dc motor armature voltage and flux. to zero speed, or u = 0 or = . the latter is impossible, it only changes through the armature voltage to reduce speed. to speed to a higher value can increase or decrease the u .keyword dc speed

3、feedback brakeregulator systemsa regulator system is one which normally provides output power in its steady-state operation.for example, a motor speed regulator maintains the motor speed at a constant value despite variations in load torque. even if the load torque is removed, the motor must provide

4、 sufficient torque to overcome the viscous friction effect of the bearings. other forms of regulator also provide output power; a temperature regulator must maintain the temperature of, say, an oven constant despite the heat loss in the oven. a voltage regulator must also maintain the output voltage

5、 constant despite variation in the load current. for any system to provide an output, e.g., speed, temperature, voltage, etc., an error signal must exist under steady-state conditions. electrical brakingin many speed control systems, e.g., rolling mills, mine winders, etc., the load has to be freque

6、ntly brought to a standstill and reversed. the rate at which the speed reduces following a reduced speed demand is dependent on the stored energy and the braking system used. a small speed control system (sometimes known as a velodyne) can employ mechanical braking, but this is not feasible with lar

7、ge speed controllers since it is difficult and costly to remove the heat generated.the various methods of electrical braking available are:(1) regenerative braking.(2) eddy current braking.(3) dynamic braking.(4) reverse current braking(plugging)regenerative braking is the best method, though not ne

8、cessarily the most economic. the stored energy in the load is converted into electrical energy by the work motor (acting temporarily as a generator) and is returned to the power supply system. the supply system thus acts as a”sink”into which the unwanted energy is delivered. providing the supply sys

9、tem has adequate capacity, the consequent rise in terminal voltage will be small during the short periods of regeneration. in the ward-leonard method of speed control of dc motors, regenerative braking is inherent, but thyristor drives have to be arranged to invert to regenerate. induction motor dri

10、ves can regenerate if the rotor shaft is driven faster than speed of the rotating field. the advent of low-cost variable-frequency supplies from thyristor inverters have brought about considerable changes in the use of induction motors in variable speed drives.eddy current braking can be applied to

11、any machine, simply by mounting a copper or aluminum disc on the shaft and rotating it in a magnetic field. the problem of removing the heat generated is severe in large system as the temperature of the shaft, bearings, and motor will be raised if prolonged braking is applied.in dynamic braking, the

12、 stored energy is dissipated in a resistor in the circuit. when applied to small dc machines, the armature supply is disconnected and a resistor is connected across the armature (usually by a relay, contactor, or thyristor).the field voltage is maintained, and braking is applied down to the lowest s

13、peed. induction motors require a somewhat more complex arrangement, the stator windings being disconnected from the ac supply and reconnected to a dc supply. the electrical energy generated is then dissipated in the rotor circuit. dynamic braking is applied to many large ac hoist systems where the b

14、raking duty is both severe and prolonged.dc motor speed controlthe basis of all methods of dc motor speed control is derived from the equations:the terms having their usual meanings. if the iara drop is small, the equations approximate to or 。thus, control of armature voltage and field flux influenc

15、es the motor speed. to reduce the speed to zero, either u=0 or=.the latter is inadmissible; hence control at low speed is by armature voltage variation. to increase the speed to a high value, either u is made very large or is reduced. the latter is the most practical way and is known as field weaken

16、ing. combinations of the two are used where a wide range of speed is required.a single-quadrant speed control system using thyristorsa single-quadrant thyristor converter system is shown in fig.1.for the moment the reader should ignore the rectifier br2 and its associated circuitry (including resist

17、or r in the ac circuit), since this is needed only as a protective feature and is described in next section.fig.1 thyristor speed control system with current limitation on the ac sidesince the circuit is a single-quadrant converter, the speed of the motor shaft (which is the output from the system)

18、can be controlled in one direction of rotation only. moreover, regenerative braking cannot be applied to the motor; in this type of system, the motor armature can suddenly be brought to rest by dynamic braking (i.e. when the thyristor gate pulses are phased back to 180o, a resister can be connected

19、across the armature by a relay or some other means).rectifier br1 provides a constant voltage across the shunt field winding, giving a constant field flux. the armature current is controlled by a thyristor which is, in turn, controlled by the pulses applied to its gate. the armature speed increases

20、as the pulses are phased forward (which reduces the delay angle of firing), and the armature speed reduces as the gate pulses are phased back.the speed reference signal is derived from a manually operated potentiometer (shown at the right-hand side of fig.23.1), and the feedback signal or output spe

21、ed signal is derived from the resistor chain r1 r2, which is connected across the armature. (strictly speaking, the feedback signal in the system in fig.23.1 is proportional to the armature voltage, which is proportional to the shaft speed only if the armature resistance drop, iara, is small. method

22、s used to compensate for the iara drop are discussed in reading material.)since the armature voltage is obtained from a thyristor, the voltage consists of a series of pulses; these pulses are smoothed by capacitor c. the speed reference signal is of the opposite polarity to the armature voltage sign

23、al to ensure that overall negative feedback is applied.a feature of dc motor drives is that the load presented to the supply is a mixture of resistance, inductance, and back emf diode d in fig.1 ensures that the thyristor current commutates to zero when its anode potential falls below the potential

24、of the upper armature connection, in the manner outlined before. in the drive shown, the potential of the thyristor cathode is equal to the back emf of the motor while it is in a blocking state. conduction can only take place during the time interval when the instantaneous supply voltage is greater

25、than the back emf.inspection of fig.2 shows that when the motor is running, the peak inverse voltage applied to the thyristor is mush greater than the peak forward voltage. by connecting a diode in series with the thyristor, as shown, the reverse blocking capability of the circuit is increased to al

26、low low-voltage thyristor to be used.references:fig.2 illustrating the effect of motor back emf on thepeak inverse voltage applied to the thyristorfig.3 armature voltage waveformsthe waveforms shown in fig.2 are idealized waveforms as much as they ignore the effects of armature inductance,commutator

27、 ripple,etc.typical armature voltage waveforms are shown in fig.3.in this waveform the thyristor is triggered at point a, and conduction continues to point b when the supply voltage falls below the armature back emf.the effect of armature inductance is to force the thyristor to continue to conduct u

28、ntil point c,when the fly-wheel diode prevents the armature voltage from reversing. when the inductive energy has dissipated (point d), the armature current is zero and the voltage returns to its normal level, the transients having settled out by point e.the undulations on the waveform between e and

29、 f are due to commentator ripple.references1.landau id(1999)from robust control to adaptive control.control eng prac 7:111311242.forssell u,ljung l(1999)closed-loop identification revisited. automatica 35:121512413.soderstrom t,stoica p(1989)system identification.prentice hall,cambridge,uk4.horng jh

30、(1999)neural adaptive tracking control of a dc motor.information sci 118:1135.lyshevski se(1999)nonlinear control of mechatronic systems with permanent-magnet dc motors.mechatronics 9:5395526.yavin y,kemp pd(2000)modeling and control of the motion of a rolling disk:e?ect of the motor dynamics on the

31、 dynamical model.comput meth appl mech eng 188:6136247.mummadi vc(2000)steady-state and dynamic performance analysis of pv supplied dc motors fed from intermediate power converter.solar energy mater solar cells 61:3653818.jang jo,jeon gj(2000)a parallel neuro-controller for dc motors containing nonl

32、inear friction.neurocomputing 30:2332489.nordin m,gutman p(2002)controlling mechanical systems with backlasha survey.automatica 38:1633164910.wu r-h,tung p-c(2002)studies of stick-slip friction,pre-sliding displacement,and hunting.j dyn syst 124:11111711.ogata k(1990)modern control engineering.prent

33、ice hall,englewood cli?s,nj12.slotine e,li w(1991)applied nonlinear control.prentice hall,englewood cli?s,nj13.lee pl(1993)nonlinear process control:applications of gen-eric model control.springer,berlin heidelberg new york直流電動(dòng)機(jī)調(diào)速控制摘要 調(diào)節(jié)系統(tǒng)的特征在于能保持輸出功率的穩(wěn)定。不同的速度控制系統(tǒng)可以使用不同的制動(dòng)系統(tǒng),在有高起、制動(dòng)轉(zhuǎn)矩,快速響應(yīng)和快速度調(diào)節(jié)范圍要求

34、的直流調(diào)速系統(tǒng)中,采用的是電氣制動(dòng)的方式。直流電機(jī)的速度控制取決于電樞電壓和磁通。要將轉(zhuǎn)速降為零,或者u=0或=。后者是不可能的,因此只可通過(guò)電樞電壓的變化來(lái)降低轉(zhuǎn)速。要將轉(zhuǎn)速增加到較高值,可以增大u或減小。關(guān)鍵詞 直流調(diào)速 反饋 制動(dòng)調(diào)節(jié)系統(tǒng)調(diào)節(jié)系統(tǒng)是一類(lèi)通常能提供穩(wěn)定輸出功率的系統(tǒng)。例如,電機(jī)速度調(diào)節(jié)器要能在負(fù)載轉(zhuǎn)矩變化時(shí)仍能保持電機(jī)轉(zhuǎn)速為恒定值。即使負(fù)載轉(zhuǎn)矩為零,電機(jī)也必須提供足夠的轉(zhuǎn)矩來(lái)克服軸承的粘滯摩擦影響。其他類(lèi)型的調(diào)節(jié)器也提供輸出功率,溫度調(diào)節(jié)器必須保持爐內(nèi)的溫度恒定,也就是說(shuō),即使?fàn)t內(nèi)的溫度散失也必須保持爐溫不變。一個(gè)電壓調(diào)節(jié)其也必須保持負(fù)載電流值變化時(shí)輸出電壓值恒定。對(duì)于任何

35、一個(gè)提供一個(gè)輸出,例如,速度、溫度、電壓等的系統(tǒng),在穩(wěn)態(tài)下必須存在一個(gè)誤差信號(hào)。電氣制動(dòng)在許多速度控制系統(tǒng)中,例如軋鋼機(jī)、礦坑卷?yè)P(yáng)機(jī)等這些負(fù)載要求頻繁地停頓和反向運(yùn)動(dòng)的系統(tǒng)。隨著減速要求,速度減小的比率取決于存儲(chǔ)的能量和所使用的制動(dòng)系統(tǒng)。一個(gè)小型速度控制系統(tǒng)(例如所知的伺服積分器)可以采用機(jī)械制動(dòng),但這對(duì)大型速度控制器并不可行,因?yàn)樯岷茈y而且很昂貴??尚械母鞣N電氣制動(dòng)方法有:(1) 回饋制動(dòng)。(2) 渦流制動(dòng)。(3) 能耗制動(dòng)(4) 反接制動(dòng)回饋制動(dòng)雖然并不一定是最經(jīng)濟(jì)的方式,但卻是最好的方式。負(fù)載中存儲(chǔ)的能量通過(guò)工作電機(jī)(暫時(shí)以發(fā)電機(jī)模式運(yùn)行)被轉(zhuǎn)化成電能并返回到電源系統(tǒng)中。這樣電源就充當(dāng)

36、了一個(gè)收容不想要的能量的角色。假如電源系統(tǒng)具有足夠的容量,在短時(shí)回饋過(guò)程中最終引起的端電壓升高會(huì)很少。在直流電機(jī)速度控制渥特-勒奧那多法中,回饋制動(dòng)是固有的,但可控硅傳動(dòng)裝置必須被排布的可以反饋。如果轉(zhuǎn)軸速度快于旋轉(zhuǎn)磁場(chǎng)的速度,感應(yīng)電機(jī)傳動(dòng)裝置可以反饋。由晶閘管換流器而來(lái)的廉價(jià)變頻電源的出現(xiàn)在變速裝置感應(yīng)電機(jī)應(yīng)用中引起了巨大的變化。渦流制動(dòng)可用于任何機(jī)器,只要在軸上安裝一個(gè)銅條或鋁盤(pán)并在磁場(chǎng)中旋轉(zhuǎn)它即可。在大型系統(tǒng)中,散熱問(wèn)題是很重要的,因?yàn)槿绻L(zhǎng)時(shí)間制動(dòng),軸、軸承和電機(jī)的溫度就會(huì)升高。在能耗制動(dòng)中,存儲(chǔ)的能量消耗在回路電阻器上。用在小型直流電機(jī)上時(shí),電樞供電被斷開(kāi),接入一個(gè)電阻器(通常是一個(gè)繼電器、接觸器或晶閘管)。保持磁場(chǎng)電壓,施加制動(dòng)降到最低速。感應(yīng)電機(jī)要求稍微復(fù)雜一點(diǎn)的排布,定子繞組被從交流電源上斷開(kāi),接到直流電源上。產(chǎn)生的電能繼而消耗在轉(zhuǎn)子回路中。能耗制動(dòng)應(yīng)用在許多大型交流升降系統(tǒng)中,制動(dòng)的職責(zé)是反向和延長(zhǎng)。任何電機(jī)都可以通過(guò)突然反接電源以提供反向的旋轉(zhuǎn)方向(反

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論