![雙線性函數(shù)及其應(yīng)用_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-10/12/2e3e0266-d1d2-474b-9f02-6065d0180087/2e3e0266-d1d2-474b-9f02-6065d01800871.gif)
![雙線性函數(shù)及其應(yīng)用_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-10/12/2e3e0266-d1d2-474b-9f02-6065d0180087/2e3e0266-d1d2-474b-9f02-6065d01800872.gif)
![雙線性函數(shù)及其應(yīng)用_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-10/12/2e3e0266-d1d2-474b-9f02-6065d0180087/2e3e0266-d1d2-474b-9f02-6065d01800873.gif)
![雙線性函數(shù)及其應(yīng)用_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-10/12/2e3e0266-d1d2-474b-9f02-6065d0180087/2e3e0266-d1d2-474b-9f02-6065d01800874.gif)
![雙線性函數(shù)及其應(yīng)用_第5頁](http://file2.renrendoc.com/fileroot_temp3/2021-10/12/2e3e0266-d1d2-474b-9f02-6065d0180087/2e3e0266-d1d2-474b-9f02-6065d01800875.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、本科生畢業(yè)論文(設(shè)計(jì))題 目: 雙線性函數(shù)及其應(yīng)用專 業(yè): 數(shù)學(xué)與應(yīng)用數(shù)學(xué)學(xué) 號: 學(xué)生姓名: 目 錄摘要(關(guān)鍵詞)1Abstract(Key words)1前言21 常用的歐式空間12 雙線性函數(shù)22.1 線性函數(shù)的簡單性質(zhì)2 2.1.1 線性函數(shù)的定義2 2.1.2 線性空間的性質(zhì)3 2.1.3 對偶基32.2 雙線性函數(shù)的內(nèi)容及性質(zhì)32.2.1 雙線性函數(shù)的性質(zhì)32.2.2 雙線性函數(shù)的內(nèi)容33 雙線性函數(shù)在不同基下的矩陣4 3.1 雙線性函數(shù)在不同基下的矩陣之間的關(guān)系43.2 相同基下,不同的雙線性函數(shù)所對應(yīng)的矩陣54 雙線性函數(shù)與辛空間及對偶空間64.1雙線性函數(shù)與辛空間74.2雙線
2、性函數(shù)與對偶空間 105雙線性函數(shù)的應(yīng)用領(lǐng)域 136 結(jié)束語 14參考文獻(xiàn) 14致謝 1ii雙線性函數(shù)及其應(yīng)用雙線性函數(shù)及其應(yīng)用 摘要:在以往的密碼學(xué)研究當(dāng)中,雙線性配對函數(shù)(Weil配對和Tate配對)通常被用在密碼分析學(xué)中:通過使用配對函數(shù),可以將某些橢圓曲線上的離散對數(shù)問題約減到有限域上的離散對數(shù)問題。 近些年來,密碼學(xué)家發(fā)現(xiàn),如果對配對函數(shù)進(jìn)行適當(dāng)?shù)母膭?dòng),并應(yīng)用在某些合適的橢圓曲線上,就可以構(gòu)造出低帶寬的、可證明安全的(provable secure)、基于雙線性配對函數(shù)的加密、簽名和密鑰協(xié)商等協(xié)議。這些突破性的工作為密碼協(xié)議的構(gòu)造開辟了新的思路:由于雙線性配對函數(shù)所具有的特性,可以用
3、來設(shè)計(jì)一些具有特殊性質(zhì)的密碼協(xié)議,這些協(xié)議一般很難用其他方法實(shí)現(xiàn),或者即使可以實(shí)現(xiàn),其效率也沒有基于雙線性配對函數(shù)的高。例如短簽名、三方一輪的密鑰協(xié)商協(xié)議、基于身份的加密方案等。 本文主要研究雙線性配對函數(shù)在構(gòu)造新的密碼協(xié)議方面的應(yīng)用。主要研究內(nèi)容包括:(1)總結(jié)了雙線性配對函數(shù)的概念、所具有的特性,并介紹了Diffie-Hellman難題以及雙線性配對函數(shù)在密碼學(xué)中的應(yīng)用;(2)提出了一個(gè)使用雙線性配對函數(shù)的前向安全的數(shù)字簽名方案:在一個(gè)基于雙線性配對函數(shù)的簽名方案的基礎(chǔ)上構(gòu)造了一個(gè)前向安全的簽名方案。文中對方案的安全性進(jìn)行了分析,并與已有的一些前向安全的簽名方案進(jìn)行了比較,結(jié)果表明該方案在
4、效率和簽名長度上有一定的優(yōu)勢;(3)本文對這樣一種情況提出了解決方案:多個(gè)用戶將加密數(shù)據(jù)(使用Alice的公鑰)發(fā)送到不完全可信的數(shù)據(jù)存儲服務(wù)器上(例如郵件服務(wù)器和文件服務(wù)器等)。如果Alice想讓服務(wù)器能夠查詢加密文檔是否含有某些單詞并反饋結(jié)果,但同時(shí)又不希望給予服務(wù)器解密數(shù)據(jù)的能力。在這種情況下,需要特殊的技術(shù)來處理。本文構(gòu)造了一個(gè)可查詢的、基于公鑰并與流密碼結(jié)合的、使用雙線性配對函數(shù)的加密系統(tǒng),它能讓服務(wù)器進(jìn)行查詢,而又不失數(shù)據(jù)的機(jī)密性。在該方案中,服務(wù)器并不能了解比查詢結(jié)果更多的關(guān)于明文的信息;且當(dāng)只給定密文時(shí),不被信任的服務(wù)器不能得到關(guān)于明文的信息。(4)提出了一個(gè)盲聚合簽名方案,它
5、結(jié)合了盲簽名和聚合簽名兩者的優(yōu)點(diǎn),使生成的盲簽名聚合為一個(gè)聚合簽名,節(jié)省了時(shí)間和存儲空間,也降低了對傳輸帶寬的要求。關(guān)鍵詞:雙線性函數(shù);矩陣的合同;矩陣的相似Abstract:In the past the cryptography studies, bilinear pairing function (Weil pairing Tate and matching) are usually used in analysis in learning, password: through the use of matching function, can will some of the elli
6、ptic curve discrete logarithm problem about reduced to a limited domain of discrete logarithm problem. In recent years, cryptography, home found that, if properly to visual function changes, and application in some appropriate elliptic curve, it can be constructed out of the low bandwidth, can prove
7、 safe (provable secure), based on bilinear pairings function of encryption, signatures and key agreement protocol, etc. These breakthrough for the construction of the password agreement opened up a new train: because bilinear pairings is the features of a function, can be used to design some has cer
8、tain types of password agreement, these agreements with other method very hard commonly, or even can realize, its efficiency and no based on bilinear pairings function of high. For example, three square round short signature of key agreement protocol, identity based encryption scheme. This paper mak
9、es a study of the bilinear pairings function in the construction of new password agreement applications. The main research contents include: (1) summarized the bilinear pairings function concept, has the characteristics, and introduced the diffie-hellman problem and bilinear pairings function in the
10、 application of cryptography; (2) put forward a using bilinear pairings of function to safety before digital signature scheme: in a based on bilinear pairing the signature scheme based on the structure of a prior to the safety of the signature scheme. In this paper the safety of the scheme are analy
11、zed, and some have to safety before the signature schemes are compared, and the results show that the scheme in efficiency and signature length have a certain advantages; (3) in this paper put forward such a solution: multiple users will be encrypted data (use Alice public key) sent to not completel
12、y reliable data storage server (such as mail servers and file servers, etc.). If Alice wants to let the server can inquires documentation is contain certain words encryption and feedback result, but at the same time and dont want to give the server decrypt data ability. In this case, the need for sp
13、ecial technology to deal with. This paper constructs a can inquire, based on public key and and flow of the combination of the password, using bilinear pairings function encryption system, it can make the query server, and do not break data confidentiality. In this scheme, the server and cant unders
14、tand the results more than inquires about expressly information; And when only a given ciphertext, not trusted server cant get about expressly information. (4) put forward a blind signature scheme polymerization, it combines blind signature and polymerization signature advantage of the two, to gener
15、ate the blind signature polymerization as a signature polymerization, saving time and storage space, also reduced of transmission bandwidth requirements. Key words:Double linear function, and the matrix of the contract, the matrix of the similar 前言雙線性函數(shù)是線性代數(shù)理論的一個(gè)重要內(nèi)容它涉及很多內(nèi)容,如對稱陣、反對稱陣、二次型、正交陣、辛陣等,特別地
16、雙線性函數(shù)與線性函數(shù)有密切關(guān)系由于研究關(guān)聯(lián)著多個(gè)因素的量所引起的問題,則需要考察多元函數(shù)。如果所研究的關(guān)聯(lián)性是線性的,那么稱這個(gè)問題為線性問題。歷史上線性代數(shù)的第一個(gè)問題是關(guān)于解線性方程組的問題,而線性方程組理論的發(fā)展又促成了作為工具的矩陣論和行列式理論的創(chuàng)立與發(fā)展,這些內(nèi)容已成為我們線性代數(shù)教材的主要部分。最初的線性方程組問題大都是來源于生活實(shí)踐,正是實(shí)際問題刺激了線性代數(shù)這一學(xué)科的誕生與發(fā)展。另外,近現(xiàn)代數(shù)學(xué)分析與幾何學(xué)等數(shù)學(xué)分支的要求也促使了線性代數(shù)的進(jìn)一步發(fā)展。1常用的歐式空間常用的歐式空間 (1) 線性空間,對如下定義的內(nèi)積構(gòu)成歐式空間。 (2) 線性空間對如下定義的內(nèi)積構(gòu)成歐式空間
17、。 2雙線性函數(shù) 2.1 線性函數(shù)的簡單性質(zhì)2.1.1 線性函數(shù)的定義設(shè)是V上的線性函數(shù),則(0)=0,如果的線性組合:,那么 定理 設(shè)V是P上一個(gè)n維線性空間,是V的一組基,而是P中任意n個(gè)數(shù),存在唯一的V上線性函數(shù)使()= 2.1.2線性函數(shù)空間的性質(zhì)設(shè)V是數(shù)域上P線性空間,V上的全體線性函數(shù)的集合記為L(V, P), 定義)加法 ()()=()+() L(V, P) V)數(shù)乘,則 也是一個(gè) p上的線性空間。并稱 為的對偶空間。2.1.3對偶基設(shè)為 的一組基,定義 =,則是的一組基。稱 為的對偶基。定理 的維數(shù)等于的維數(shù),而且是 的一組基定理 設(shè) 及 ,是線性空間的兩組基,它們的對偶基分別
18、與及。如果由到,的過渡矩陣為A ,那么由到的過渡矩陣為2.2 雙線性函數(shù)的定義及性質(zhì)2.2.1 雙線性函數(shù)的性質(zhì) 雙線性函數(shù)設(shè)是數(shù)域 P上一個(gè)線性空間。是上一個(gè)二元函數(shù),即對中任意兩個(gè)向量都唯一地對應(yīng)P 中的一個(gè)數(shù)。記為。如果有以下性質(zhì): =k+k 則稱 為 上的雙線性函數(shù)。2.2.2 雙線性函數(shù)的定義一般地,雙線性函數(shù)的定義如下:設(shè)X,Y和Z為相同域K上的三個(gè)線性空間,當(dāng)二元映射對兩個(gè)自變量都是線性映射時(shí),則這樣的二元映射f稱之為從線性空間XY到Z的一個(gè)雙線性映射或雙線性函數(shù)。此時(shí) 。即函數(shù)的值域 。換句話說,雙線性函數(shù)的本質(zhì)特征是,如果保持雙線性映射的任一個(gè)自變量固定不變,并留下另一個(gè)自變
19、量作變元,則結(jié)果都是一個(gè)線性函數(shù)。這就是雙線性函數(shù)的偏線性。即對于 , ,及 ,都成立和如下圖所示: 3雙線性函數(shù)在不同基下的矩陣3.1 雙線性函數(shù)在不同基下的矩陣之間的關(guān)系 在不同的基下,同一個(gè)雙線性函數(shù)的度量矩陣一般是不同的,它們之間的什么關(guān)系呢?設(shè)及是線性空間的兩組基:是中兩個(gè)向量,那么如果雙線性函數(shù)在及下的度量矩陣分別為,則有.又.因此這說明同一個(gè)雙線性函數(shù)在不同基下的度量矩陣是合同的3.2 相同基下,不同的雙線性函數(shù)所對應(yīng)的矩陣設(shè)是數(shù)域上維列向量構(gòu)成的線性空間.再設(shè)是上級方陣.令, (1)則是上的一個(gè)雙線性函數(shù).如果設(shè),并設(shè)則. (2)(1)或(2)實(shí)際上是數(shù)域上任意維線性空間上的雙
20、線性函數(shù)的一般形式.可以如下地說明這一事實(shí).取的一組基.設(shè),則. (3)令,則(3)就成為(1)或(2).設(shè)是數(shù)域上維線性空間上的一個(gè)雙線性函數(shù). 是的一組基,則矩陣 (4)叫做在下的度量矩陣.上面的討論說明,取定的一組基后,每個(gè)雙線性函數(shù)都對應(yīng)于一個(gè)級矩陣,就是這個(gè)雙線性函數(shù)在基下的度量矩陣.度量矩陣被雙線性函數(shù)及基唯一確定.而且不同的雙線性函數(shù)在同一基下的度量矩陣是不同的.反之,任給數(shù)域上一個(gè)級矩陣對中任意向量及,其中,用定義的函數(shù)是上一個(gè)雙線性函數(shù).容易計(jì)算出在下的度量矩陣就是.因此,在給定的基下,上全體雙線性函數(shù)與上全體級矩陣之間的一個(gè)雙射.4 雙線性函數(shù)與辛空間及對偶空間4.1 辛空
21、間1、 主要定義 1. 辛空間中一定能找到一組基滿足.這樣的基稱為的辛正交基.還可看出辛空間一定是偶數(shù)維的.2任一級非退化反對稱矩陣可把一個(gè)數(shù)域上維空間化成一個(gè)辛空間,且使為的某基下度量矩陣.又此辛空間在某辛正交基下的度量矩陣為, (1)故合同于.即任一級非退化反對稱矩陣皆合同于.兩個(gè)辛空間及,若有到的作為線性空間的同構(gòu),它滿足,則稱是到的辛同構(gòu).到的作為線性空間的同構(gòu)是辛同構(gòu)當(dāng)且僅當(dāng)它把的一組辛正交基變成的辛正交基.兩個(gè)辛空間是辛同構(gòu)的當(dāng)且僅當(dāng)它們有相同的維數(shù).辛空間到自身的,辛同構(gòu)稱為上的辛變換.取定的一組辛正交基,上的一個(gè)線性變換,在該基下的矩陣為,,其中皆為方陣.則是辛變換當(dāng)且僅當(dāng),亦
22、即當(dāng)且僅當(dāng)下列條件成立:且易證,及辛變換的乘積、辛變換的逆變換皆為辛變換.設(shè)是辛空間,,滿足,則稱為辛正交的.是的子空間,令. (2)顯然是的子空間,稱為的辛正交補(bǔ)空間.定理7 是辛空間,是的子空間,則.定義9 為辛空間,為的子空間.若,則稱為的迷向子空間;若,即是極大的(按包含關(guān)系)迷向子空單間,也稱它為拉格朗日子空間;若,則稱為的辛了空間.例如,設(shè)是的辛正交基,則是迷向子空間. 是極大迷向子空間,即拉格朗日子空間是辛子空間.對辛空間的子空間.通過驗(yàn)證,并利用定理7,可得下列性質(zhì):(1) ,(2) ,(3) 若是辛子空間,則(4) 若是迷向子空間,則(5) 若是拉格朗日子空間,則定理8 設(shè)是
23、辛空間的拉格朗日子空間,是的基,則它可擴(kuò)充為的辛正交基.推論 設(shè)是的迷向子空間,是的基,則它可擴(kuò)充成的辛正交基.對于辛子空間,也是非退化的.同樣也非退化.由定理7還有.定理9 辛空間的辛子空間的一組辛正交基可擴(kuò)充成的辛正交基.定理10 令為辛空間,和是兩個(gè)拉格朗日子空間或兩個(gè)同維數(shù)的辛子空間,則有的辛變換把變成.辛空間的兩個(gè)子空間及之間的(線性)同構(gòu)若滿足則稱為與間的等距.Witt定理 辛空間的兩個(gè)子空間,之間若有等距,則此等距可擴(kuò)充成的一個(gè)辛變換.下面是辛變換的特征值的一些性質(zhì).是辛空間上的辛變換,則的行列式為1.取定的辛正交基.設(shè)在基下矩陣為,這時(shí)有.定理11 設(shè)是維辛空間中的辛變換,是在
24、某辛正交基下的矩陣.則它的特征多項(xiàng)式滿足.若設(shè),則.由定理11可知,辛變換的特征多項(xiàng)式的(復(fù))根與是同時(shí)出現(xiàn)的,且具有相同的重?cái)?shù).它在中的特征值也如此.又等于的所有(復(fù))根的積,而.故特征值的重?cái)?shù)為偶數(shù).又不等于的復(fù)根的重?cái)?shù)的和及空間的維數(shù)皆為偶數(shù),因此特征值為的重?cái)?shù)也為偶數(shù).定理12 設(shè)是數(shù)域上辛空間上辛變換在中的特征值,且.設(shè),分別是中對應(yīng)于特征值及的特征子空間.則,有,即與是辛正交的.特別地,當(dāng)時(shí)是迷向子空間.二、主要結(jié)論1. 設(shè)是上一個(gè)維線性空間,是的一組基,是中任意個(gè)數(shù),存在唯一的上線性函數(shù)使 .2. 設(shè)及是線性空間的兩組基,它們的對偶基分別為及.如果由到的過渡矩陣為,那么由到的過渡
25、矩陣為.3. 的維數(shù)等于的維數(shù),而且是的一組基.4. 是一個(gè)線性空間,是的對偶空間的對偶空間. 到的映射是一個(gè)同構(gòu)映射.5. 在給定的基下,上全體雙線性函數(shù)與上全體級矩陣之間的一個(gè)雙射.6. 同一個(gè)雙線性函數(shù)在不同基下的度量矩陣是合同的.7. 設(shè)是數(shù)域上維線性空間,是上對稱雙線性函數(shù),則存在的一組基,使在這組基下的度量矩陣為對角矩陣.8. 兩個(gè)辛空間是辛同構(gòu)的當(dāng)且僅當(dāng)它們有相同的維數(shù).9. 是辛空間,是的子空間,則4.2 對偶空間 設(shè)是數(shù)域上一個(gè)維線性空間. 上全體線性函數(shù)組成的集合記作.可以用自然的方法在上定義加法和數(shù)量乘法.設(shè)是的兩個(gè)線性函數(shù).定義函數(shù)如下:.也是線性函數(shù):.稱為與的和.還
26、可以定義數(shù)量乘法.設(shè)是上線性函數(shù),對于中任意數(shù),定義函數(shù)如下:,稱為與的數(shù)量乘積,易證也是線性函數(shù).容易檢驗(yàn),在這樣定義的加法和數(shù)量乘法下,成為數(shù)域上的線性空間.取定的一組基,作上個(gè)線性函數(shù),使得 (1)因?yàn)樵诨系闹狄汛_定,這樣的線性函數(shù)是存在且唯一的.對中向量,有, (2)即是的第個(gè)坐標(biāo)的值.引理 對中任意向量,有, (3)而對中任意向量,有. (4)定理2 的維數(shù)等于的維數(shù),而且是的一組基.定義2 稱為的對偶空間.由(1)決定的的基,稱為的對偶基.以后簡單地把的對偶空間記作.例 考慮實(shí)數(shù)域上的維線性空間,對任意取定的個(gè)不同實(shí)數(shù),根據(jù)拉格朗日插值公式,得到個(gè)多項(xiàng)式它們滿足是線性無關(guān)的,因?yàn)?/p>
27、由用代入,即得.又因是維的,所以是的一組基.設(shè)是在點(diǎn)的取值函數(shù):則線性函數(shù)滿足因此,是的對偶基.下面討論的兩組基的對偶基之間的關(guān)系.設(shè)是數(shù)域上一個(gè)維線性空間.及是的兩組基.它們的對偶基分別是及.再設(shè)其中, 由假設(shè),.因此由矩陣乘法定義,即得即定理3 設(shè)及是線性空間的兩組基,它們的對偶基分別為及.如果由到的過渡矩陣為,那么由到的過渡矩陣為.設(shè)是上一個(gè)線性空間,是其對偶空間,取定中一個(gè)向量,定義的一個(gè)函數(shù)如下:.根據(jù)線性函數(shù)的定義,容易檢驗(yàn)是上的一個(gè)線性函數(shù),因此是的對偶空間中的一個(gè)元素.定理4 是一個(gè)線性空間,是的對偶空間的對偶空間. 到的映射是一個(gè)同構(gòu)映射.這個(gè)定理說明,線性空間也可看成的線性
28、函數(shù)空間,與實(shí)際上是互為線性函數(shù)空間的.這就是對偶空間名詞的來由.由此可知,任一線性空間都可看成某個(gè)線性空間的線性函數(shù)所成的空間,這個(gè)看法在多線性代數(shù)中是很重要的.5 雙線性函數(shù)的應(yīng)用領(lǐng)域5.1基于精確線性化的MIMO雙線性系統(tǒng)預(yù)測函數(shù)控制 針對典型多輸入多輸出雙線性系統(tǒng),提出了基于非線性過程精確反饋解耦線性化的預(yù)測函數(shù)控制方法.這是一種分層的控制策略,首先設(shè)計(jì)一個(gè)靜態(tài)的非線性狀態(tài)反饋,使得閉環(huán)系統(tǒng)是輸入輸出解耦和線性的;然后設(shè)計(jì)一組單輸入單輸出預(yù)測函數(shù)控制器.下層為上層預(yù)測函數(shù)控制提供一組單輸入單輸出模型,而上層預(yù)測函數(shù)控制以其固有的魯棒性來補(bǔ)償參數(shù)變化和解耦線性化的近似性,并以紙機(jī)加壓網(wǎng)前
29、箱為例進(jìn)行了仿真實(shí)驗(yàn),結(jié)果是令人滿意的.5.2雙線性荷載傳遞函數(shù)的單樁荷載沉降關(guān)系統(tǒng)采用荷載傳遞函數(shù)法研究單樁的荷載沉降關(guān)系,因其形式簡單,便于應(yīng)用,而受到普遍關(guān)注。常用的有雙線性函數(shù)、雙曲線函數(shù)、對數(shù)及指數(shù)函數(shù)等 。其中,雙線性函數(shù)在模擬樁周土的軟化特性上較其它函數(shù)有相對優(yōu)勢 。然而,現(xiàn)有的基于雙線性函數(shù)的單樁荷載沉降關(guān)系解析解答只是針對某種特定工況(比如摩擦樁 )或特定模型而提出來的,比如,樁側(cè)土強(qiáng)度隨深度不變,樁周土為硬化模型 或理想彈塑性模型 ,或樁側(cè)土強(qiáng)度隨深度線性變化且為理想彈塑性模型而樁端土為硬化模型?,F(xiàn)有解答形式多樣且散亂,不便于對實(shí)際工程進(jìn)行設(shè)計(jì)分析和應(yīng)用。本文采用雙線性荷載傳遞函數(shù)模擬樁側(cè)土和樁端土的硬化和軟化模型特性,同時(shí)考慮樁側(cè)土的抗剪強(qiáng)度隨深度線性增加,推導(dǎo)了樁周土在不同狀態(tài)(彈性或塑性)組合下的單樁荷載沉降關(guān)系解答及其算法,使之能夠反映單樁在不同工況下的荷載傳遞機(jī)理,即承載特性,使解答完善和統(tǒng)一。6 結(jié)束語雙線性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025二手空調(diào)購銷合同范本
- 促銷活動(dòng)合同范例
- 2024年六年級品社下冊《去中學(xué)看看》說課稿2 蘇教版
- 2024年五年級英語下冊 Unit 4 Did You Have a Nice Trip Lesson 19 Li Ming Goes Home說課稿 冀教版(三起)
- 劇本店合作合同范例
- Chapter 6 Activities we like 第四課時(shí)(說課稿)-2024-2025學(xué)年新思維小學(xué)英語2B
- 2023九年級數(shù)學(xué)上冊 第二章 一元二次方程5 一元二次方程的根與系數(shù)的關(guān)系說課稿 (新版)北師大版
- 2023三年級數(shù)學(xué)上冊 四 乘與除第3課時(shí) 豐收了說課稿 北師大版
- 11《趙州橋》第二課時(shí) 說課稿-2023-2024學(xué)年統(tǒng)編版語文三年級下冊
- 太陽能風(fēng)能發(fā)電成本對比分析
- 《電氣作業(yè)安全培訓(xùn)》課件
- 水平二(四年級第一學(xué)期)體育《小足球(18課時(shí))》大單元教學(xué)計(jì)劃
- 《關(guān)于時(shí)間管理》課件
- 醫(yī)藥高等數(shù)學(xué)智慧樹知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學(xué)
- 城市道路智慧路燈項(xiàng)目 投標(biāo)方案(技術(shù)標(biāo))
- 水泥采購?fù)稑?biāo)方案(技術(shù)標(biāo))
- 醫(yī)院招標(biāo)采購管理辦法及實(shí)施細(xì)則(試行)
- 初中英語-Unit2 My dream job(writing)教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思
- 廣州市勞動(dòng)仲裁申請書
- 江西省上饒市高三一模理綜化學(xué)試題附參考答案
- 23-張方紅-IVF的治療流程及護(hù)理
評論
0/150
提交評論