版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、1第五單元第五單元 四邊形四邊形第第24課時矩形、菱形、正方形課時矩形、菱形、正方形 回回 歸歸 教教 材材回回 歸歸 教教 材材考考 點點 聚聚 焦焦考考 點點 聚聚 焦焦考考 向向 探探 究究考考 向向 探探 究究2第五單元第五單元 四邊形四邊形回 歸 教 材回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究B B 3第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究4第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究150150 5第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究6第五單元第五單元 四邊形
2、四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究7第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究8第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究考點考點1 1矩形矩形 矩形的定義矩形的定義有一個角是有一個角是_的平行四邊形叫作的平行四邊形叫作矩形矩形矩形的矩形的性質(zhì)性質(zhì)對稱性對稱性矩形是軸對稱圖形,它有兩條對稱軸矩形是軸對稱圖形,它有兩條對稱軸矩形是中心對稱圖形,它的對稱中心是矩形是中心對稱圖形,它的對稱中心是對角線的交點對角線的交點定理定理(1)(1)矩形的四個角都是矩形的四個角都是_角;角;(2)(2)矩形的對角線互相平
3、分并且矩形的對角線互相平分并且_直角直角 直直 相等相等 考考 點點 聚聚 焦焦9第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究( (續(xù)表續(xù)表) ) 矩形的判定矩形的判定(1)(1)定義法;定義法;(2)(2)有三個角是直角的四邊形是矩形;有三個角是直角的四邊形是矩形;(3)(3)對角線對角線_的平行四邊形是矩形的平行四邊形是矩形拓展拓展(1)(1)矩形的兩條對角線把矩形分成四個面積相矩形的兩條對角線把矩形分成四個面積相等的等腰三角形;等的等腰三角形;(2)(2)矩形的面積等于兩鄰邊的積矩形的面積等于兩鄰邊的積相等相等 10第五單元第五單元 四邊形四邊形回歸教材
4、回歸教材考點聚焦考點聚焦考向探究考向探究考點考點2 2菱形菱形 菱形的定義菱形的定義 一組一組_相等的平行四邊形叫作菱形相等的平行四邊形叫作菱形菱形菱形的的性質(zhì)性質(zhì)對對稱稱性性菱形是軸對稱圖形,兩條對角線所在的直線是它的對菱形是軸對稱圖形,兩條對角線所在的直線是它的對稱軸稱軸菱形是中心對稱圖形,它的對稱中心是兩條對角線的菱形是中心對稱圖形,它的對稱中心是兩條對角線的交點交點定定理理(1)(1)菱形的四條邊菱形的四條邊_;(2)(2)菱形的兩條對角線互相菱形的兩條對角線互相_平分,并且每條平分,并且每條對角線平分對角線平分_菱形的判定菱形的判定(1)(1)定義法;定義法;(2)(2)四條邊四條邊
5、_的四邊形是菱形;的四邊形是菱形;(3)(3)對角線互相對角線互相_的平行四邊形是菱形的平行四邊形是菱形菱形的面積菱形的面積(1)(1)菱形的面積底菱形的面積底高;高;(2)(2)菱形的面積等于兩條對角線長度乘積的菱形的面積等于兩條對角線長度乘積的_鄰邊鄰邊 相等相等 垂直垂直 一組對角一組對角 相等相等 垂直垂直 一半一半 11第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究考點考點3 3正方形正方形 正方形的正方形的定義定義有一組鄰邊相等,且有一個角是直角的平行四邊有一組鄰邊相等,且有一個角是直角的平行四邊形叫作正方形形叫作正方形正方形的正方形的性質(zhì)性質(zhì)(1)
6、(1)正方形的對邊正方形的對邊_(2)(2)正方形的四邊正方形的四邊_(3)(3)正方形的四個角都是正方形的四個角都是_(4)(4)正方形的對角線相等,互相正方形的對角線相等,互相_,每條,每條對角線平分一組對角對角線平分一組對角(5)(5)正方形既是軸對稱圖形又是中心對稱圖形,正方形既是軸對稱圖形又是中心對稱圖形,對稱軸有四條,對稱中心是對角線的交點對稱軸有四條,對稱中心是對角線的交點正方形的正方形的判定判定(1)(1)有一組鄰邊相等的矩形是正方形有一組鄰邊相等的矩形是正方形(2)(2)有一個角是直角的菱形是正方形有一個角是直角的菱形是正方形相等相等 直角直角 垂直平分垂直平分 平行且相等平
7、行且相等 12第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究圖圖24245 5判定正方形的思路圖:判定正方形的思路圖: 13第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究探究探究1 1矩形的性質(zhì)與判定矩形的性質(zhì)與判定命題角度命題角度(1)(1)應用矩形的性質(zhì),結(jié)合等腰三角形、直角三角形的性質(zhì)應用矩形的性質(zhì),結(jié)合等腰三角形、直角三角形的性質(zhì)求線段的長和角度大?。磺缶€段的長和角度大?。?2)(2)證明一個四邊形是矩形;證明一個四邊形是矩形;(3)(3)添加條件使得四邊形是矩形添加條件使得四邊形是矩形考考 向向 探探 究究14第五單元第
8、五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究例例1 1【20172017百色】百色】如圖如圖24246 6,矩形,矩形ABCDABCD中,中,E E,F(xiàn) F分別是分別是ADAD,BCBC的中點,的中點,CECE,AFAF分別交分別交DBDB于于G G,H H兩點兩點求證:求證:(1)(1)四邊形四邊形AFCEAFCE是平行四邊形;是平行四邊形;(2)EG(2)EGHF.HF.圖圖24246 6證明:證明:(1)(1)四邊形四邊形ABCDABCD是矩形,是矩形,ADBCADBC,ADADBCBC,EE、F F分別是分別是ADAD、BCBC中點,中點,AEAECFCF,又,
9、又AECFAECF,四邊形四邊形AFCEAFCE是平行四邊形是平行四邊形15第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究(2)(2)四邊形四邊形AFCEAFCE是平行四邊形,是平行四邊形,ECAFECAF,F(xiàn)HBFHBCGHCGH,又又CGHCGHDGEDGE,DGEDGEFHBFHB,ADBCADBC,EDGEDGFBHFBH,EE、F F分別是分別是ADAD、BCBC中點,中點,ADADBCBC,DEDEBFBF,DEGDEGBFHBFH,EGEGHF.HF.| |針對訓練針對訓練| |1 1判斷正誤:判斷正誤:(1)(1)矩形的四個角都是直角;矩形的四個
10、角都是直角;( () )(2)(2)矩形的對角線互相垂直平分;矩形的對角線互相垂直平分;( () ) 16(3)(3)有一個角是直角的四邊形是矩形;有一個角是直角的四邊形是矩形;( () )(4)(4)對角線互相垂直的平行四邊形是矩形;對角線互相垂直的平行四邊形是矩形;( () )(5)(5)對角線相等的四邊形是矩形;對角線相等的四邊形是矩形;( () )(6)(6)有三個角相等的四邊形是矩形;有三個角相等的四邊形是矩形;( () )(7)(7)矩形的兩條對角線把矩形分成四個全等的等腰三角形,矩形的兩條對角線把矩形分成四個全等的等腰三角形,四個全等的直角三角形四個全等的直角三角形( () )
11、2 2如圖如圖24247 7,四邊形,四邊形ABCDABCD的對角線的對角線ACAC、BDBD交于點交于點O O,已知,已知O O是是ACAC的中點,的中點,AEAECFCF,DFBE.DFBE.圖圖24247 7回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究第五單元第五單元 四邊形四邊形17(1)(1)求證:求證:BOEBOEDOFDOF;(2)(2)若若ODODACAC,則四邊形,則四邊形ABCDABCD是什么特殊四邊形?請證明你是什么特殊四邊形?請證明你的結(jié)論的結(jié)論解:解:(1)(1)證明:證明:OO是是ACAC的中點,的中點,OAOAOCOC,又又AEAECFCF,OEOEOFOF,
12、又又DFBEDFBE,OEBOEBOFDOFD,又,又EOBEOBFODFOD,BOEBOEDOF.DOF.(2)(2)四邊形四邊形ABCDABCD是矩形證明:是矩形證明:BOEBOEDOFDOF,ODODOBOB,又,又OAOAOCOC,四邊形四邊形ABCDABCD是平行四邊形,又是平行四邊形,又ODODACAC,ODODBDBD,ACACBDBD,四邊形四邊形ABCDABCD是矩形是矩形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究第五單元第五單元 四邊形四邊形18【方法模型】【方法模型】 矩形是特殊的平行四邊形,具有平行四邊形的所有性質(zhì)判矩形是特殊的平行四邊形,具有平行四邊形的所有性質(zhì)
13、判定一個四邊形是不是矩形,首先要看這個四邊形是不是平行定一個四邊形是不是矩形,首先要看這個四邊形是不是平行四邊形,再看它是否有一個內(nèi)角是直角如果這個四邊形不四邊形,再看它是否有一個內(nèi)角是直角如果這個四邊形不能確定是平行四邊形,那么可以通過在該四邊形中找到三個能確定是平行四邊形,那么可以通過在該四邊形中找到三個內(nèi)角是直角或?qū)蔷€互相平分且相等來進行判定內(nèi)角是直角或?qū)蔷€互相平分且相等來進行判定回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究第五單元第五單元 四邊形四邊形19第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究 探究探究2 2菱形的性質(zhì)與判定菱形的性質(zhì)與判
14、定命題角度命題角度以菱形為背景,利用菱形的性質(zhì)進行證明或計算以菱形為背景,利用菱形的性質(zhì)進行證明或計算例例2 2 如圖如圖24248 8,已知某菱形花壇,已知某菱形花壇ABCDABCD的周長是的周長是24 m24 m,BADBAD120120,則,則 (1)BAC(1)BAC_,DACDAC_,BCABCA_,ABCABC_;(2)AB(2)AB_,ACAC_,BDBD_;(3)(3)菱形花壇菱形花壇ABCDABCD的面積是的面積是_圖圖24248 86060 6060 6060 6060 6 cm6 cm 6 cm6 cm 20回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究第五單元第五單元
15、 四邊形四邊形21第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究| |針對訓練針對訓練| |1 1判斷正誤:判斷正誤:(1)(1)菱形的四條邊相等;菱形的四條邊相等;( () )(2)(2)菱形的四個角相等;菱形的四個角相等;( () )(3)(3)菱形的對角線互相平分且相等;菱形的對角線互相平分且相等;( () )(4)(4)菱形的對角線互相垂直平分,且每一條對角線平分一組菱形的對角線互相垂直平分,且每一條對角線平分一組對角;對角;( () )(5)(5)一組鄰邊相等的平行四邊形是菱形;一組鄰邊相等的平行四邊形是菱形;( () )(6)(6)四條邊相等的四邊形
16、是菱形;四條邊相等的四邊形是菱形;( () )(7)(7)對角線互相垂直的四邊形是菱形;對角線互相垂直的四邊形是菱形;( () )(8)(8)對角線相等的平行四邊形是菱形對角線相等的平行四邊形是菱形( () ) 22第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究ACBDACBD 平行四邊形平行四邊形ABCDABCD是菱形是菱形 證明:證明:四邊形四邊形ABCDABCD是平行四邊形,是平行四邊形,OAOAOC.ACBDOC.ACBD,ADADCD.CD.又又四邊形四邊形ABCDABCD是平行四邊形,是平行四邊形,四邊形四邊形ABCDABCD是是菱形菱形23第五單元
17、第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究【方法模型】【方法模型】 在證明一個四邊形是菱形時,要注意判別的條件是平在證明一個四邊形是菱形時,要注意判別的條件是平行四邊形還是任意四邊形若是任意四邊形,則需證四條邊行四邊形還是任意四邊形若是任意四邊形,則需證四條邊都相等;若是平行四邊形,則需利用對角線互相垂直或一組都相等;若是平行四邊形,則需利用對角線互相垂直或一組鄰邊相等來證明鄰邊相等來證明24第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究探究探究3 3正方形的性質(zhì)與判定正方形的性質(zhì)與判定命題角度命題角度以正方形為背景,利用正方形的性質(zhì)
18、進行證明或計算以正方形為背景,利用正方形的性質(zhì)進行證明或計算例例3 3 如圖如圖24241010,正方形,正方形ABCDABCD的邊長為的邊長為8 cm8 cm,E E、F F、G G、H H分別是分別是ABAB、BCBC、CDCD、DADA上的動點,且上的動點,且AEAEBFBFCGCGDH.DH.(1)(1)求證:四邊形求證:四邊形EFGHEFGH是正方形;是正方形;(2)(2)判斷直線判斷直線EGEG是否經(jīng)過某一定點,說明理由;是否經(jīng)過某一定點,說明理由;(3)(3)求四邊形求四邊形EFGHEFGH面積的最小值面積的最小值圖圖2424101025第五單元第五單元 四邊形四邊形回歸教材回歸
19、教材考點聚焦考點聚焦考向探究考向探究解:解:(1)(1)證明:證明:四邊形四邊形ABCDABCD是正方形,是正方形,AABB9090,ABABDADA,AEAEDHDH,BEBEAHAH,又,又AEAEBFBF,AEHAEHBFEBFE,EHEHFEFE,AHEAHEBEFBEF,同理:,同理:FEFEGFGFHGHG,EHEHFEFEGFGFHGHG,四邊形四邊形EFGHEFGH是菱形,是菱形,AA9090,AHEAHEAEHAEH9090,BEFBEFAEHAEH9090,F(xiàn)EHFEH9090,菱形菱形EFGHEFGH是正方形是正方形26第五單元第五單元 四邊形四邊形回歸教材回歸教材考點聚
20、焦考點聚焦考向探究考向探究27(3)(3)設設AEAEDHDHx x,則,則AHAH8 8x x,在,在RtRtAEHAEH中,中,EHEH2 2AEAE2 2AHAH2 2x x2 2(8(8x)x)2 22x2x2 216x16x64642(x2(x4)4)2 23232,四邊四邊形形EFGHEFGH面積的最小值為面積的最小值為32 cm32 cm2 2. .| |針對訓練針對訓練| |【20172017邵陽】邵陽】如圖如圖24241111,已知平行四邊形,已知平行四邊形ABCDABCD,對角線,對角線ACAC,BDBD相交于點相交于點O O,OBCOBCOCB.OCB.(1)(1)求證:
21、平行四邊形求證:平行四邊形ABCDABCD是矩形;是矩形;(2)(2)請?zhí)砑右粋€條件使矩形請?zhí)砑右粋€條件使矩形ABCDABCD為正方形為正方形圖圖24241111回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究第五單元第五單元 四邊形四邊形28解:解:(1)(1)證明:證明:四邊形四邊形ABCDABCD是平行四邊形,是平行四邊形,ADBC.DAOADBC.DAOOCBOCB,ADOADOOBC.OBC.OBCOBCOCBOCB,DAODAOADO.ADO.OBOBOCOC,OAOAOD.OBOD.OBODODOAOAOCOC,即即ACACBD.BD.平行四邊形平行四邊形ABCDABCD是矩形是矩形(2)AB(2)ABAD.(AD.(答案不唯一答案不唯一) )回歸教材回歸教材考點聚焦考點聚焦考向探究考向探究第五單元第五單元 四邊形四邊形29第五單元第五單元 四邊形四邊形回
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國防護眼鏡行業(yè)市場集中度、市場規(guī)模及未來前景分析報告
- 信息技術項目可行性研究報告
- 二零二五年度居民社區(qū)搬遷補償合同范本3篇
- 污水處理廠建設項目可行性研究報告
- 2025年度石材行業(yè)綠色建材認證服務合同示范2篇
- 二零二五年度WXLX09009號航空航天材料研發(fā)與應用合同2篇
- 二零二五年度古建筑修繕包工包料施工合同模板2篇
- 百年風流人物:曾國藩(四川大學)學習通測試及答案
- 2025年度物聯(lián)網(wǎng)技術開發(fā)與推廣合同2篇
- 2025年度汽車制造合資企業(yè)協(xié)議書3篇
- 品質(zhì)異常處理及要求培訓
- 模具部年終總結(jié)--ppt課件
- 立式熱虹吸再沸器機械設計說明書
- 國家開放大學電大《生產(chǎn)與運作管理》2025-2026期末試題及答案
- 質(zhì)量保證大綱(共14頁)
- 關于歐盟新版EMC標準EN55032的解析
- 云南省普通初中學生成長記錄基本素質(zhì)發(fā)展初一初三
- 木材材積表0.1-10米.xls
- 輕質(zhì)隔墻板安裝合同協(xié)議書范本標準版
- 車輛管理各崗位績效考核量表
- 挺身式跳遠單元教學計劃
評論
0/150
提交評論