體外動態(tài)評估人體消化過程中食物凝膠對物質(zhì)轉(zhuǎn)運的影響_第1頁
體外動態(tài)評估人體消化過程中食物凝膠對物質(zhì)轉(zhuǎn)運的影響_第2頁
體外動態(tài)評估人體消化過程中食物凝膠對物質(zhì)轉(zhuǎn)運的影響_第3頁
體外動態(tài)評估人體消化過程中食物凝膠對物質(zhì)轉(zhuǎn)運的影響_第4頁
體外動態(tài)評估人體消化過程中食物凝膠對物質(zhì)轉(zhuǎn)運的影響_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、體外動態(tài)評估人體消化過程中食物凝膠對物質(zhì)轉(zhuǎn)運的影響摘要:過去十年食品配料在健康成人體內(nèi)消化的機制越來越得到科學(xué)界的關(guān)注。這類研究需要包括醫(yī)藥、化學(xué)和工程等范圍在內(nèi)的相關(guān)學(xué)科。這項研究中,我們的目標(biāo)是建立簡單的體外腸道模型來研究食物消化和營養(yǎng)吸收中一系列食物凝膠對物質(zhì)轉(zhuǎn)運的影響。這個模型完成了腸道運動的模仿并且主要研究在毫米級尺度上反應(yīng)出的消化過程中所發(fā)生的現(xiàn)象。結(jié)果表明凝膠物質(zhì)在阻礙葡萄糖吸收方面具有重要意義,而且在粘度為0.001Pa時最為明顯(在物質(zhì)轉(zhuǎn)運和模擬的葡萄糖吸收上有5倍的阻礙作用)。這表明食品物料中凝膠物質(zhì)有調(diào)節(jié)葡萄糖利用率的潛質(zhì)。1.介紹據(jù)估計,食物中凝膠的應(yīng)用占世界上水狀凝膠

2、應(yīng)用的三分之一(總共約有1千5百萬種)。盡管食品中凝膠首先被用來做膠狀制劑,但它也越來越多的與眾多重要的健康因素聯(lián)系在一起,其中包括2型糖尿病患者的血糖和胰島素的控制,體重控制和心血管疾病的預(yù)防。這些功能與增稠,水化,疏水和食物凝膠的原生特性以及他們在食物消化過程中的影響有關(guān)。可能的作用機制是隨著食物的消化,體內(nèi)凝膠物質(zhì)積累,粘度增加而阻礙物質(zhì)在內(nèi)臟器官中的轉(zhuǎn)運。這將導(dǎo)致胃排空速度減慢和一定的營養(yǎng)吸收。但是,目前還不能完整的知道影響營養(yǎng)的生物吸收率尤其是凝膠在物質(zhì)轉(zhuǎn)運和食物消化過程中的影響的詳細機理。量化人體消化過程是一個有挑戰(zhàn)性的研究領(lǐng)域。雖然“人造消化系統(tǒng)”的重要性一直被重視,但直到最近十

3、年體外技術(shù)的應(yīng)用才使其有了一個明顯的增加。依據(jù)是否生動體現(xiàn)出消化過程(流體混合、模擬消化道分泌物的增加和消化產(chǎn)物的移除)中形象的時間脈沖波形,體外系統(tǒng)已經(jīng)被廣泛應(yīng)用于“批量化”和“動力學(xué)”。典型的“批量化”處理模型由一系列的血管組成,每一個血管模擬消化系統(tǒng)(如嘴、胃、小腸、結(jié)腸)內(nèi)不同的條件(如pH、酶、溫度、生物活性劑等)。這個系統(tǒng)已經(jīng)被Englyst,Veenstra和 Hudsonto用來測量植物性食品中葡萄糖的快速有效的利用,Oomen,Tolls,Sips和Van den Hoop也評估了消化道的機制。類似的系統(tǒng)也包括模擬4步消化(口腔的,胃的、小腸的和大腸的)的多級的pH恒定方法,

4、De Boever,Deplancke和Verstraete的五步消化模型由五個雙夾套容器組成。盡管這些模型提供了有價值的信息,但是它們沒有體現(xiàn)可能影響消化動力學(xué)的機械力的作用、流體流動和混合。有動態(tài)元素的模型包括口腔的、胃的和腸道的消化可能有特殊的應(yīng)用??谇幌糠謴?fù)雜而且難以模仿。很多研究者將這個步驟簡化,用商業(yè)的絞肉機來模擬口腔消化過程。也有人建立模型來研究口腔消化過程中的咀嚼,舌頭運動,剪切和擠壓。動態(tài)胃部消化模型通常要考慮在合適的生理條件下(pH、混合和流動、酶濃度等)食團在胃部的混合機制。在Kong和Singh的模型中,這種混合由提供了食物樣本中需要的機械壓力的塑料小球的運動來模擬

5、。在Chen,Gaikwad,Holmes,Murray,Povey,Wang和Zhag的模型中,食團混合由放置在夾套式容器軸向中心的球形探頭進行可控制的垂直運動來模擬?,F(xiàn)在英國的諾維奇的食品研究所用的動態(tài)胃部模型(DGM)用一個圓錐形的柔性管壁和一個有一定食物剪切率的圓筒狀物質(zhì)來模擬胃部消化過程。動態(tài)胃部模型模擬食物在胃部特定的生理條件下(pH梯度和相關(guān)酶)的物理混合、運輸和分解。腸道消化在食物混合過程中是必不可少的部分,但在文獻中少有關(guān)于建立腸道模型的研究。在被報道的Tharakan和Tharakan建立的模型中,分段是由有彈性的透析袋在兩個充氣可控橡膠封套的幫助下擠壓來模仿腸壁的運動。在

6、這種模型中,流動狀態(tài)能夠影響模擬器中溶解在水中和瓜爾膠中化學(xué)元素的吸收。Nahar研究了模擬的蠕動過程(彈性管道的擠壓)中流體的剪切由于稀化所表現(xiàn)的流動特性。在20世紀中期,荷蘭組織(TNO)介紹了TNO腸道模型(TIM),TIM是一個電腦控制的體外消化系統(tǒng),其中用不同的隔室代表了消化道的不同組成部分(胃,十二指腸、空腸、回腸和結(jié)腸)。每個組成部分配有柔性膜用來模擬消化場所,柔性膜外部用兩個玻璃外套來控制所需溫度和壓力?,F(xiàn)在共有兩個TIM模型:TIM1(胃和小腸)和TIM2(大腸)。有“批量化處理”和“動力學(xué)”元素在內(nèi)的模型文獻中也有報道。例如,“批量化處理”胃部消化已經(jīng)結(jié)合了透析膜和透析袋的

7、功能來模擬化學(xué)物質(zhì)透過小腸細胞壁的過程。在其它系統(tǒng)中,用蠕動泵來控制與成人和嬰兒分泌物相關(guān)的被消化食物的流動。總之,有證據(jù)表明人類消化系統(tǒng)的動態(tài)特性對食物的可消化率有重要的決定作用。特別是在消化道中的流動和混合很大程度上影響消化進程,但是物質(zhì)轉(zhuǎn)運和食物消化之間的關(guān)系仍然需要大量的探索。在這樣一個框架中,我們建立了體外模型來模擬消化道壁的收縮,并使用一定范圍的食物凝膠(瓜爾膠、羧甲基纖維素、果膠),以此來探究腸動力對模擬溶劑中葡萄糖的可利用率影響。通過用工程學(xué)和無量綱數(shù)分析實驗數(shù)據(jù)表征了在消化道內(nèi)的食物流動(雷諾數(shù))和物質(zhì)轉(zhuǎn)運(舍伍德數(shù))的特征。我們發(fā)現(xiàn)不考慮水狀凝膠的利用或者分段模型的應(yīng)用對結(jié)

8、果的影響,所有不同研究消化條件下的雷諾數(shù)和舍伍德數(shù)與食糜溶液的濃度成線性關(guān)系。隨著雷諾數(shù)的增加,流體層流減弱,物質(zhì)轉(zhuǎn)運增加。在溶劑中的粘度為0.1Pas時流體物料的轉(zhuǎn)運數(shù)據(jù)與Tharakan所報道的結(jié)果相吻合。這個粘度值在對動物進行研究發(fā)現(xiàn)的細胞腔粘度值范圍之內(nèi)。低粘度的系統(tǒng)(雷諾系數(shù)高)所表現(xiàn)出的物料轉(zhuǎn)運水平高。這表明瓜爾膠在減少餐后血糖水平上是應(yīng)用廣泛、相對昂貴而且消費者接受率高的水狀凝膠。2.材料與方法2.1樣品準備這項研究評估不同粘度的濃度為1% wt/vol(55mM)的葡萄糖溶液對模擬葡萄糖吸收過程中物質(zhì)轉(zhuǎn)運的影響。這個濃度接近于加了半小袋糖一杯咖啡的糖濃度,并且是體內(nèi)血糖平衡時濃

9、度的10倍。通過加入不同的凝膠(瓜爾膠、果膠、羧甲基纖維素鈉)來調(diào)節(jié)濃度。實驗中所使用的水為蒸餾水。瓜爾膠和果膠來自Fluka,英國,使用過程中緩慢加入80的不斷攪拌的葡萄糖溶劑中并保溫5分鐘。羧甲基纖維素鈉使用時也是緩慢加入不斷攪拌的葡萄糖溶劑中但溫度為60,保溫時間為10分鐘?;旌衔镌谑覝叵逻^夜并用高架攪拌器攪拌充分水合,并在24小時內(nèi)使用。實驗中用旋轉(zhuǎn)流變儀測量粘度(圖1)。2.2體外模型:SIM和DDuo2.2.1體外模型:SIM和DDuo用于這項研究的小腸模型(SIM)是由伯明翰大學(xué)化學(xué)工程院研制,在其它地方有詳細敘述。模型(圖2)由一個代表腸道內(nèi)腔(平均成人的小腸直徑為32毫米)的

10、內(nèi)部透析袋組成,外部用同軸的不透硅膠管(軟管,英國,直徑50毫米,厚3毫米)連接外面區(qū)域。毛孔大小為薄膜能夠阻止物質(zhì)轉(zhuǎn)運的最小孔徑。在這個典型實驗中,物質(zhì)進入內(nèi)腔的末端然后在蠕動泵的作用下會進入再循環(huán)。容器內(nèi)的流體(最初是蒸餾水)也進入再循環(huán),通過一個收集罐進行取樣。腸動力的模擬是通過充氣控制兩個橡膠封套進行充放氣實現(xiàn)的。封套膨脹時導(dǎo)致軟管壓縮,以此模擬腸壁收縮。封套放氣時釋放了壓力,使軟管恢復(fù)至最初的圓柱狀。目前的研究工作,是用濃度為1% wt/vol (55 mM)的葡萄糖溶液加或者不加凝膠物質(zhì)(瓜爾膠,羧甲基纖維素鈉,果膠)來作為食糜系統(tǒng)的模型,之后在接收區(qū)接收葡萄糖進行測量。第二,進一

11、步的體外模型(動態(tài)十二指腸模型,DDuo)被研制出,最初結(jié)果在這里也給予呈現(xiàn)。為了更加系統(tǒng)的研究消化過程中蠕動和切割運動的影響,新的模擬器械自動化程度更高而且設(shè)計更加靈活。十二指腸模型(圖3)同樣和小腸模型一樣采用雙筒設(shè)計,小的活性化學(xué)物質(zhì)通過透析袋透過模擬食糜中物質(zhì)透過毛細孔到接收區(qū)。在距離加料端100mm處設(shè)計一個固定的分泌物端口用來注射小腸分泌物(例如胰臟和肝臟的分泌物)。這段距離代表了人體內(nèi)從幽門到胰管之間空缺的平均距離。分割和蠕動通過8個可獨立控制的部分進行擠壓來完成。這表明設(shè)計的模型是專門用來研究人類消化的工程學(xué)方面(物質(zhì)轉(zhuǎn)運),這在現(xiàn)有的文獻上是很少見的。到目前為止,其它生理條件

12、例如消化道膜上的營養(yǎng)物質(zhì)的運輸或者反饋機制的影響還不清楚。2.2.2方法除非另作說明,小腸模型的2個套依次循環(huán)6秒(膨脹2秒,放棄2秒,保持2秒),每分鐘循環(huán)10次。混合對葡萄糖吸收的影響在系統(tǒng)中詳細研究(表1)(無剪切度的條件也加以研究)。透析袋最后關(guān)閉,食糜不再進行循環(huán)。實驗結(jié)果總共有三份,誤差率的平均值在表中給出。在蠕動泵的幫助下,食糜以1.6×10-4m3s-1的速度進行再循環(huán),用這種開放式結(jié)構(gòu)研究分割頻率在模擬葡萄糖吸收方面上的影響(表2)。端口分別以3、6、9s的速度進行循環(huán),其中膨脹、放氣以及保持的頻率相同分別為1、2、3s。葡萄糖在接收區(qū)的增加取決于所采用的DNS方法

13、,在2.3部分有敘述。實驗結(jié)果有三份,誤差率平均值在表中給出。十二指腸模型的初始試驗采用濃度為1% w/w的葡萄糖溶液加或不加1%的瓜爾膠作為食糜系統(tǒng)。除非另作說明,分割出現(xiàn)在4個位置(圖3中藍色箭頭),且每10s交替一次。雖然為了得到更進一步的結(jié)論還需要繼續(xù)研究,但是初始結(jié)果已經(jīng)可以表明新模型和小腸模型SIM相比較而言的潛質(zhì)。2.3樣品分析DNS用二硝基水楊酸法(DNS)分析接收區(qū)處樣品中的葡萄糖。將相同體積(1mL)的樣品(空白加水)與DNS試劑加入試管中,混合,放入沸水浴5分鐘。生成物立即冷卻至室溫,在540nm處測量分光光度值。2.4數(shù)據(jù)分析2.4.1物質(zhì)轉(zhuǎn)運系數(shù)傳質(zhì)系數(shù)由前述所定。圖

14、4是在接收區(qū)葡萄糖隨著時間變化的吸收率用來估計消化道模型中的傳質(zhì)速率.通過膜的摩爾通量用方程式1和方程式2計算。傳質(zhì)系數(shù)由方程式3得出。r 代表膜半徑,L是長度,A是總吸收面面積,molglucose是是葡萄糖接收面,MT是總摩爾通量,C是膜兩側(cè)濃度差(初始濃度差為0.055M,假設(shè)時間改變無影響),Koverall是總傳質(zhì)系數(shù)。葡萄糖分子的檢測需要從內(nèi)腔運輸?shù)酵肝瞿?,通過透析膜,再轉(zhuǎn)運到接收流體中。這三個過程通過細胞腔的傳質(zhì)系數(shù)來體現(xiàn)(Klumen,m s-1 ),通過薄膜擴散,接收面的傳質(zhì)系數(shù)(Krec, ms-1)體現(xiàn)。方程式4給出了該部分和總傳質(zhì)系數(shù)間的關(guān)系。為了得出測試的食糜樣品的K

15、lumen,首先必須估算出Ksystem,Ksystem在整個實驗過程中看作常數(shù)。因為通過整個實驗過程中內(nèi)腔側(cè)傳質(zhì)系數(shù)的阻力最小化實現(xiàn)的,所以1/Klumen會比1/Ksystem小得多。在內(nèi)管中增加流量使內(nèi)腔側(cè)面阻力最小化,流體為含1%葡萄糖的水溶液,直至Koverall系數(shù)不再增加。這個值即為Ksystem。2.4.2雷諾茲和舍伍德常數(shù)為了更進一步表示出物質(zhì)轉(zhuǎn)運的過程和研究流動和擴散在模擬消化道中的重要性,由方程式5和方程式6表示出無量綱量雷諾茲數(shù)(Re)和舍伍德數(shù)(Sh)。是流體密度(kg m-3),u流體流速(m s-1),r是膜半徑(m),m是溶液粘度(Pa s),Dglucosei

16、s是果糖擴散率(6.9×10-10m2s-1)。速率u決定因素如下:每次腔口收縮排出的水體積與管內(nèi)直徑為2r,長度為Lcuff的水體積相等。用膨脹時間除以體積得到體積流率,在除膜的橫截面積得到速率值。3.結(jié)論3.1SIM中物質(zhì)轉(zhuǎn)運模擬含1%葡糖糖的水溶液的葡萄糖吸收率在瓜爾膠含量為0.1%,羧甲基纖維素鈉0.1%或0.5%,有或沒有分段作用下都呈線性關(guān)系,如表4所示,并且沒有任何的平臺期。所有相關(guān)傳質(zhì)系數(shù)由方程式3計算。結(jié)果在圖5 中給出,作為剪切度為0時的結(jié)果。圖5說明分割運動有助于葡萄糖吸收率的提高,可能是因為管口的擠壓運動使膜壁葡萄糖吸收率提高的原因。對水溶液來說,影響遠不止這

17、些,分段應(yīng)用能導(dǎo)致傳質(zhì)系數(shù)增長30%。含0.1%瓜爾膠和0.1%羧甲基纖維素鈉的稠度更高的溶液能夠在擠壓過程中使Koverall值增加20%。這個Tharakan提出的通過增加稠度減少擠壓對物質(zhì)轉(zhuǎn)運的影響的結(jié)果不謀而合。圖5也說明分段運動過程中粘度系數(shù)最低時液體傳質(zhì)系數(shù)最高,表明粘度最低時對物質(zhì)轉(zhuǎn)運的阻力最小。食糜粘度增加導(dǎo)致物質(zhì)轉(zhuǎn)運減慢。有趣的是,在羧甲基纖維素鈉濃度為0.5%時,沒有分段運動的條件下,在一定的時間內(nèi),葡萄糖的轉(zhuǎn)運相當(dāng)受抑制。這些估計的結(jié)果與從志愿者口服加或不加濃度為3.6% wt/ vol 瓜爾膠的葡萄糖后得出的Koverall值相關(guān)。雖然葡萄糖和瓜爾膠在目前研究中所使用的

18、濃度不同,但值得注意的是目前試驗和人體的Koverall值是處在相同的數(shù)量級且添加水狀膠質(zhì)都使Koverall值減少。瓜爾膠在降低餐后葡萄糖水平上主要是在腸動力作用下通過增加食糜粘度抑制食糜流體流動。圖6是分割運動頻率對瓜爾膠和果膠溶液物質(zhì)轉(zhuǎn)運的影響。在所有試驗條件下,增加速率導(dǎo)致轉(zhuǎn)運減慢。且瓜爾膠和果膠效果有同樣的趨勢:系統(tǒng)中含瓜爾膠含量從0.02 Pa s 到 1.2 Pa s或果膠含量從0.05 Pa s 到1.9 Pa s時,Koverall數(shù)值呈3倍減少。在同樣的系統(tǒng)中,分割頻率最后確定,總傳質(zhì)系數(shù)由研究草案估計。進一步增加瓜爾膠濃度對物質(zhì)轉(zhuǎn)運則無太大影響,這與之前Tharakan

19、所研究的結(jié)果相同。有趣的是,分段收縮希望能增加食糜混合從而是傳質(zhì)系數(shù)增加。這也可能通過減少“沒有被攪動的水”與鄰近層消化道壁物質(zhì)交換阻礙分子擴散和營養(yǎng)吸收而進一步加強物質(zhì)轉(zhuǎn)運。根據(jù)“表面恢復(fù)”理論也可得出相似的結(jié)論。但是,收縮頻率對瓜爾膠或果糖溶液在所研究的濃度范圍內(nèi)試驗Koverall值無影響。試驗過程中,擠壓腸壁造成攪動的時間比管壁松弛的時間少。擠壓頻率的任何輕微改變都希望能對物質(zhì)傳遞有一定影響。這可能是SIM的一種限制,在下一代的DDuo中將會考慮到這一點。表5和表6證明了食物配方和分段運動在控制消化過程中的潛質(zhì)。從這些結(jié)果中可以得出正確規(guī)劃對食物可消化性的影響相當(dāng)復(fù)雜,除了粘度外,其它

20、流變學(xué)變量在決定營養(yǎng)的生物可利用率方面發(fā)揮重要作用。此外,食品配方有望在體外分段模型試驗上有更大的影響。(例如:流體食物能刺激更大程度的收縮,但是高粘度食物通常與肌肉淺層運動有關(guān))。圖7給出了雷諾茲數(shù)和舍伍德數(shù),有方程式5和方程式6計算的出。從大體趨勢可以看出,雷諾茲數(shù)增加到100或以上時,對流傳送比擴散增加的速度更快。這表明在高雷諾茲葷數(shù)促進了物質(zhì)轉(zhuǎn)運的對流傳遞速率。有趣的是,在瓜爾膠溶液中雷諾茲數(shù)在1000附近時對流傳遞過程出現(xiàn)了一個明顯的臺階。這可能是因為流體流態(tài)從層流狀態(tài)過度到斷流狀態(tài),導(dǎo)致物質(zhì)混合和轉(zhuǎn)運加劇。雷諾茲數(shù)低于100是,流體完全成層狀,雷諾系數(shù)的增加不能導(dǎo)致舍伍德數(shù)的明顯增

21、加。不同的分段模型好像輕微的影響雷諾茲數(shù)和舍伍德數(shù)之間的關(guān)系。3.2DDuo中物質(zhì)轉(zhuǎn)運建立有規(guī)劃的混合的條件在消化道中物質(zhì)轉(zhuǎn)運和營養(yǎng)生物可利用率上有重要的決定作用,如同2.2.1部分所介紹的一樣,我們建了一個更加功能化和自動化的新模型。這個新模型旨在發(fā)現(xiàn)SIM中的局限性方面,提供更加靈活的腸動力再生系統(tǒng):有8種不同的分段未知,每個只有1厘米長(按照SIM中共有12厘米的長度算)。分段點能單獨的進行控制,所以每部分能夠按要求的時間和頻率進行運動。DDuo模型獲得的原始數(shù)據(jù)如圖8-10。圖8可以看出混合條件下含1%葡萄糖和1%瓜爾膠的水溶液對葡萄糖吸收的影響。混合通過4個不同位置相互變換的擠壓或1

22、個位置的擠壓誘導(dǎo)。結(jié)果可以與SIM模型所獲得的結(jié)果將比較。當(dāng)混合減少到僅在一個分段點進行,則不論在水溶液中還是在瓜爾膠溶液中,葡萄糖進入最終接收區(qū)的時間都將延遲10分鐘。這個結(jié)果表明,體外模型腸動力減少能影響物質(zhì)轉(zhuǎn)運的效率。DDuo模型結(jié)果表明,增加分段點數(shù)量能增加混合,從而改變葡萄糖的可利用率。圖9中可以估計不同分段點所有的傳質(zhì)系數(shù)。結(jié)果表明1個分段點時物質(zhì)轉(zhuǎn)運在水溶液中減少25%,在瓜爾膠溶液中減少45%。除此之外,分段點數(shù)量在高粘度混合(1%瓜爾膠溶液中減少40%)時的影響比低粘度(水中僅有15%減少)時大得多。圖10可以看出在含1%葡萄糖的水溶液或1%瓜爾膠的溶液中,混合頻率對Koverall值的影響。結(jié)果表明,在所研究的條件下,增加分段頻率可以加強物質(zhì)轉(zhuǎn)運。在所有情況下,流體流速低可以使物質(zhì)轉(zhuǎn)運速度更大(可增加30%)。然而,在12 cpm下,水溶液和膠體溶液的差別最小(10%),表明它們在這種情況

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論