版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第第二二章章5 5 理解教材新知理解教材新知把握熱把握熱點考向點考向應(yīng)用創(chuàng)新演練應(yīng)用創(chuàng)新演練 考點一考點一 考點二考點二提示:是復(fù)合函數(shù)提示:是復(fù)合函數(shù)問題問題2:試說明:試說明y(3x2)2如何復(fù)合的如何復(fù)合的提示:令提示:令ug(x)3x2,則,則yu2,u3x2,yf(u)f(g(x)(3x2)2.問題問題3:試求:試求y(3x2)2,f(u)u2,g(x)3x2的導(dǎo)數(shù)的導(dǎo)數(shù)提示:提示:y(9x212x4)18x12,f(u)2u,g(x)3.問題問題4:觀察問題:觀察問題3中導(dǎo)數(shù)有何關(guān)系中導(dǎo)數(shù)有何關(guān)系提示:提示:yf(g(x)f(u)g(x) 1復(fù)合函數(shù)的概念復(fù)合函數(shù)的概念 對于兩個函
2、數(shù)對于兩個函數(shù) 和和 ,給,給定定x的一個值,就得到了的一個值,就得到了u的值,進(jìn)而確定了的值,進(jìn)而確定了y的值,這的值,這樣樣y可以表示成可以表示成x的函數(shù),稱這個函數(shù)為函數(shù)的函數(shù),稱這個函數(shù)為函數(shù) 和和 的復(fù)合函數(shù),記作的復(fù)合函數(shù),記作 ,其中,其中u為中間為中間變量變量 2復(fù)合函數(shù)的求導(dǎo)法則復(fù)合函數(shù)的求導(dǎo)法則 復(fù)合函數(shù)復(fù)合函數(shù)yf(x)的導(dǎo)數(shù)為:的導(dǎo)數(shù)為:yx yf(u)u(x)axbyf(u)u(x)yf(x)f(x)f(u)(x) 利用復(fù)合函數(shù)求導(dǎo)法則求復(fù)合函數(shù)導(dǎo)數(shù)的步驟:利用復(fù)合函數(shù)求導(dǎo)法則求復(fù)合函數(shù)導(dǎo)數(shù)的步驟: (1)適當(dāng)選取中間變量分解復(fù)合函數(shù)為初等函數(shù)適當(dāng)選取中間變量分解復(fù)合
3、函數(shù)為初等函數(shù) (2)求每層的初等函數(shù)的導(dǎo)數(shù),最后把中間變量轉(zhuǎn)化求每層的初等函數(shù)的導(dǎo)數(shù),最后把中間變量轉(zhuǎn)化為自變量的函數(shù)為自變量的函數(shù) 思路點撥思路點撥先分析函數(shù)是怎樣復(fù)合而成的,找出先分析函數(shù)是怎樣復(fù)合而成的,找出中間變量,分層求導(dǎo)中間變量,分層求導(dǎo) 一點通一點通求復(fù)合函數(shù)導(dǎo)數(shù)的步驟:求復(fù)合函數(shù)導(dǎo)數(shù)的步驟: 確定中間變量,正確分解復(fù)合關(guān)系,即明確函數(shù)關(guān)系確定中間變量,正確分解復(fù)合關(guān)系,即明確函數(shù)關(guān)系yf(u),ug(x); 分步求導(dǎo)分步求導(dǎo)(弄清每一步求導(dǎo)是哪個變量對哪個變量求導(dǎo)弄清每一步求導(dǎo)是哪個變量對哪個變量求導(dǎo)),要特別注意中間變量對自變量的求導(dǎo),即先求要特別注意中間變量對自變量的求導(dǎo)
4、,即先求f(u),再求,再求g(x) 計算計算f(u)g(x),并把中間變量轉(zhuǎn)化為自變量的函數(shù),并把中間變量轉(zhuǎn)化為自變量的函數(shù)整個過程可簡記為整個過程可簡記為“分解分解求導(dǎo)求導(dǎo)回代回代”三個步驟,熟練以后可三個步驟,熟練以后可以省略中間過程以省略中間過程1函數(shù)函數(shù)ycos 2x的導(dǎo)數(shù)為的導(dǎo)數(shù)為 ()Aysin 2x Bysin 2xCy2sin 2x Dy2sin 2x解析:解析:y(cos 2x)2sin 2x.答案:答案:C2函數(shù)函數(shù)f(x)(2x1)5,則,則f(0)的值為的值為_解析:解析:f(x)5(2x1)4(2x1)10(2x1)4,f(0)10.答案:答案:10 一點通一點通將
5、復(fù)合函數(shù)的求導(dǎo)與導(dǎo)數(shù)的實際意義結(jié)將復(fù)合函數(shù)的求導(dǎo)與導(dǎo)數(shù)的實際意義結(jié)合,旨在鞏固函數(shù)在某點處的導(dǎo)數(shù)反映了函數(shù)在該點的合,旨在鞏固函數(shù)在某點處的導(dǎo)數(shù)反映了函數(shù)在該點的瞬時變化率,體現(xiàn)導(dǎo)數(shù)揭示物體某時刻的變化狀況瞬時變化率,體現(xiàn)導(dǎo)數(shù)揭示物體某時刻的變化狀況4已知某質(zhì)點的位移已知某質(zhì)點的位移s與移動時間與移動時間t滿足滿足stet1,則質(zhì)點,則質(zhì)點在在t1時的瞬時速度為時的瞬時速度為_解析:解析:s(tet1)et1tet1.當(dāng)當(dāng)t1時,時,s(1)2.答案:答案:2答案:答案:26設(shè)曲線設(shè)曲線yeax在點在點(0,1)處的切線與直線處的切線與直線x2y10垂直,則垂直,則a_.解析:解析:yaeax,且,且yeax在點在點(0,1)處的切線與直線處的切線與直線x2y10垂直,垂直,k2f(0)a,即,即a2.答案:答案:2求復(fù)合函數(shù)的導(dǎo)數(shù)應(yīng)處理好以下環(huán)節(jié):求復(fù)合函數(shù)的導(dǎo)數(shù)應(yīng)處理好以下環(huán)節(jié):(1)中間變量的選擇應(yīng)是基本函數(shù)結(jié)構(gòu);中間變量的選擇應(yīng)是基本函數(shù)結(jié)構(gòu);(2)關(guān)鍵是正確分析函數(shù)的復(fù)合層次;關(guān)鍵是正確分析函數(shù)的復(fù)合層次;(3)一般是從最外層開始,由外及里,一層層地求導(dǎo);一般是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024展覽會場保安服務(wù)與展覽會期間衛(wèi)生防疫合同3篇
- 2024年度商標(biāo)專用權(quán)轉(zhuǎn)讓及許可使用合同協(xié)議3篇
- 2024年度職業(yè)院校校服定制及學(xué)生制服配套服務(wù)合同3篇
- 部隊訓(xùn)練安全教案
- 防火安全巡查和檢測的重要性
- 2023年新七年級歷史開學(xué)分班自學(xué)反饋拔高題檢測卷(解析版)
- 2023-2024學(xué)年初中九年級上學(xué)期期末道法試題及答案
- 2024年茶藝師(四級)理論知識考試題庫(附答案)
- 簽訂保險協(xié)議合同范例
- 商鋪乙方解約合同范例
- GB/T 26470-2011架橋機通用技術(shù)條件
- 橫版介紹信(帶存根打印版)
- 胃脘痛中醫(yī)護(hù)理方案-課件
- 《大學(xué)生職業(yè)發(fā)展與就業(yè)指導(dǎo)》第二章自我認(rèn)知
- 氣壓治療儀的使用方法課件
- 最新營銷中心物業(yè)服務(wù)可視化操作指引說明詳解新實用手冊
- 食材配送投標(biāo)服務(wù)方案
- 排污許可證守法承諾書(2篇)
- 矩形頂管施工方案28
- 液壓轉(zhuǎn)向器廠總平面布置課程設(shè)計
- 說明性語段的壓縮(課堂PPT)
評論
0/150
提交評論