版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2012高考真題分類匯編:概率1.【2012高考真題遼寧理10】在長(zhǎng)為12cm的線段AB上任取一點(diǎn)C.現(xiàn)作一矩形,領(lǐng)邊長(zhǎng)分別等于線段AC,CB的長(zhǎng),則該矩形面積小于32cm2的概率為(A) (B) (C) (D) 【答案】C2.【2012高考真題湖北理8】如圖,在圓心角為直角的扇形OAB中,分別以O(shè)A,OB為直徑作兩個(gè)半圓. 在扇形OAB內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是A BC D【答案】A3.【2012高考真題廣東理7】從個(gè)位數(shù)與十位數(shù)之和為奇數(shù)的兩位數(shù)種任取一個(gè),其個(gè)位數(shù)為0的概率是A. B. C. D.【答案】D4.【2012高考真題福建理6】如圖所示,在邊長(zhǎng)為1的正方形OABC
2、中任取一點(diǎn)P,則點(diǎn)P恰好取自陰影部分的概率為A. B. C. D. 【答案】.5.【2012高考真題北京理2】設(shè)不等式組,表示平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是(A) (B) (C) (D)【答案】D6.【2012高考真題上海理11】三位同學(xué)參加跳高、跳遠(yuǎn)、鉛球項(xiàng)目的比賽,若每人都選擇其中兩個(gè)項(xiàng)目,則有且僅有兩人選擇的項(xiàng)目完全相同的概率是 (結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)?!敬鸢浮?.【2012高考真題新課標(biāo)理15】某個(gè)部件由三個(gè)元件按下圖方式連接而成,元件1或元件2正常工作,且元件3正常工作,則部件正常工作,設(shè)三個(gè)電子元件的使用壽命(單位:小時(shí))均服從正態(tài)分布,
3、且各個(gè)元件能否正常相互獨(dú)立,那么該部件的使用壽命超過1000小時(shí)的概率為 【答案】8.【2012高考江蘇6】(5分)現(xiàn)有10個(gè)數(shù),它們能構(gòu)成一個(gè)以1為首項(xiàng),為公比的等比數(shù)列,若從這10個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),則它小于8的概率是 【答案】。9.【2012高考真題四川理17】(本小題滿分12分) 某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)(簡(jiǎn)稱系統(tǒng))和,系統(tǒng)和在任意時(shí)刻發(fā)生故障的概率分別為和。()若在任意時(shí)刻至少有一個(gè)系統(tǒng)不發(fā)生故障的概率為,求的值;()設(shè)系統(tǒng)在3次相互獨(dú)立的檢測(cè)中不發(fā)生故障的次數(shù)為隨機(jī)變量,求的概率分布列及數(shù)學(xué)期望?!敬鸢浮勘绢}主要考查獨(dú)立事件的概率公式、離散型隨機(jī)變量的分布列、數(shù)學(xué)期
4、望等基礎(chǔ)知識(shí),考查實(shí)際問題的數(shù)學(xué)建模能力,數(shù)據(jù)的分析處理能力和基本運(yùn)算能力.【解析】10【2012高考真題湖北理】(本小題滿分12分)根據(jù)以往的經(jīng)驗(yàn),某工程施工期間的降水量X(單位:mm)對(duì)工期的影響如下表:降水量X工期延誤天數(shù)02610歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9. 求:()工期延誤天數(shù)的均值與方差; ()在降水量X至少是的條件下,工期延誤不超過6天的概率. 【答案】()由已知條件和概率的加法公式有:,.所以的分布列為:026100.30.40.20.1 于是,;. 故工期延誤天數(shù)的均值為3,方差為. ()由概率的加法公
5、式,又. 由條件概率,得.故在降水量X至少是mm的條件下,工期延誤不超過6天的概率是. 11.【2012高考江蘇25】(10分)設(shè)為隨機(jī)變量,從棱長(zhǎng)為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時(shí),;當(dāng)兩條棱平行時(shí),的值為兩條棱之間的距離;當(dāng)兩條棱異面時(shí), (1)求概率; (2)求的分布列,并求其數(shù)學(xué)期望【答案】解:(1)若兩條棱相交,則交點(diǎn)必為正方體8個(gè)頂點(diǎn)中的一個(gè),過任意1個(gè)頂點(diǎn)恰有3條棱, 共有對(duì)相交棱。 。 (2)若兩條棱平行,則它們的距離為1或,其中距離為的共有6對(duì), ,。 隨機(jī)變量的分布列是:01 其數(shù)學(xué)期望。 【考點(diǎn)】概率分布、數(shù)學(xué)期望等基礎(chǔ)知識(shí)?!窘馕觥浚?)求出兩條棱相交時(shí)相
6、交棱的對(duì)數(shù),即可由概率公式求得概率。 (2)求出兩條棱平行且距離為的共有6對(duì),即可求出,從而求出(兩條棱平行且距離為1和兩條棱異面),因此得到隨機(jī)變量的分布列,求出其數(shù)學(xué)期望。 12.【2012高考真題廣東理17】(本小題滿分13分)某班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖4所示,其中成績(jī)分組區(qū)間是:40,5050,6060,7070,8080,9090,100(1)求圖中x的值;(2)從成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,該2人中成績(jī)?cè)?0分以上(含90分)的人數(shù)記為,求得數(shù)學(xué)期望【答案】本題是在概率與統(tǒng)計(jì)的交匯處命題,考查了用樣本估計(jì)總體等統(tǒng)計(jì)知識(shí)以及離散型隨機(jī)變量的分布列及期
7、望,考查學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力,難度中等。【解析】13.【2012高考真題全國(guó)卷理19】(本小題滿分12分)(注意:在試題卷上作答無效)乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負(fù)方得0分.設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球.()求開始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率;()表示開始第4次發(fā)球時(shí)乙的得分,求的期望.【答案】14.【2012高考真題浙江理19】(本小題滿分14分)已知箱中裝有4個(gè)白球和5個(gè)黑球,且規(guī)定:取
8、出一個(gè)白球的2分,取出一個(gè)黑球的1分現(xiàn)從該箱中任取(無放回,且每球取到的機(jī)會(huì)均等)3個(gè)球,記隨機(jī)變量X為取出3球所得分?jǐn)?shù)之和()求X的分布列;()求X的數(shù)學(xué)期望E(X)【答案】本題主要考察分布列,數(shù)學(xué)期望等知識(shí)點(diǎn)。() X的可能取值有:3,4,5,6 ; ; 故,所求X的分布列為X3456P () 所求X的數(shù)學(xué)期望E(X)為:E(X)15.【2012高考真題重慶理17】(本小題滿分13分,()小問5分,()小問8分.)甲、乙兩人輪流投籃,每人每次投一票.約定甲先投中者獲勝,一直到有人獲勝或每人都已投球3次時(shí)投籃結(jié)束.設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響.() 求
9、甲獲勝的概率;()求投籃結(jié)束時(shí)甲的投籃次數(shù)的分布列與期望【答案】 16.【2012高考真題江西理29】(本題滿分12分)如圖,從A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)這6個(gè)點(diǎn)中隨機(jī)選取3個(gè)點(diǎn),將這3個(gè)點(diǎn)及原點(diǎn)O兩兩相連構(gòu)成一個(gè)“立體”,記該“立體”的體積為隨機(jī)變量V(如果選取的3個(gè)點(diǎn)與原點(diǎn)在同一個(gè)平面內(nèi),此時(shí)“立體”的體積V=0)。(1)求V=0的概率;(2)求V的分布列及數(shù)學(xué)期望?!敬鸢浮俊军c(diǎn)評(píng)】本題考查組合數(shù),隨機(jī)變量的概率,離散型隨機(jī)變量的分布列、期望等. 高考中,概率解答題一般有兩大方向的考查.一、以頻率分
10、布直方圖為載體,考查統(tǒng)計(jì)學(xué)中常見的數(shù)據(jù)特征:如平均數(shù),中位數(shù),頻數(shù),頻率等或古典概型;二、以應(yīng)用題為載體,考查條件概率,獨(dú)立事件的概率,隨機(jī)變量的期望與方差等.來年需要注意第一種方向的考查.17.【2012高考真題湖南理17】本小題滿分12分)某超市為了解顧客的購物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.一次購物量1至4件5至8件9至12件13至16件17件及以上顧客數(shù)(人)302510結(jié)算時(shí)間(分鐘/人)11.522.53已知這100位顧客中的一次購物量超過8件的顧客占55.()確定x,y的值,并求顧客一次購物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望
11、;()若某顧客到達(dá)收銀臺(tái)時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過2.5分鐘的概率.(注:將頻率視為概率)【答案】(1)由已知,得所以該超市所有顧客一次購物的結(jié)算時(shí)間組成一個(gè)總體,所以收集的100位顧客一次購物的結(jié)算時(shí)間可視為總體的一個(gè)容量隨機(jī)樣本,將頻率視為概率得 的分布為 X11.522.53PX的數(shù)學(xué)期望為 .()記A為事件“該顧客結(jié)算前的等候時(shí)間不超過2.5分鐘”,為該顧客前面第位顧客的結(jié)算時(shí)間,則 .由于顧客的結(jié)算相互獨(dú)立,且的分布列都與X的分布列相同,所以 .故該顧客結(jié)算前的等候時(shí)間不超過2.5分鐘的概率為.【解析】【點(diǎn)評(píng)】本題考查概率統(tǒng)計(jì)的基
12、礎(chǔ)知識(shí),考查分布列及數(shù)學(xué)期望的計(jì)算,考查運(yùn)算能力、分析問題能力.第一問中根據(jù)統(tǒng)計(jì)表和100位顧客中的一次購物量超過8件的顧客占55知從而解得,計(jì)算每一個(gè)變量對(duì)應(yīng)的概率,從而求得分布列和期望;第二問,通過設(shè)事件,判斷事件之間互斥關(guān)系,從而求得該顧客結(jié)算前的等候時(shí)間不超過2.5分鐘的概率.18.【2012高考真題安徽理17】(本小題滿分12分)某單位招聘面試,每次從試題庫隨機(jī)調(diào)用一道試題,若調(diào)用的是類型試題,則使用后該試題回庫,并增補(bǔ)一道類試題和一道類型試題入庫,此次調(diào)題工作結(jié)束;若調(diào)用的是類型試題,則使用后該試題回庫,此次調(diào)題工作結(jié)束。試題庫中現(xiàn)共有道試題,其中有道類型試題和道類型試題,以表示兩
13、次調(diào)題工作完成后,試題庫中類試題的數(shù)量。()求的概率;()設(shè),求的分布列和均值(數(shù)學(xué)期望)?!敬鸢浮勘绢}考查基本事件概率、條件概率,離散型隨機(jī)變量及其分布列,均值等基礎(chǔ)知識(shí),考查分類討論思想和應(yīng)用于創(chuàng)新意識(shí)。【解析】(I)表示兩次調(diào)題均為類型試題,概率為()時(shí),每次調(diào)用的是類型試題的概率為,隨機(jī)變量可取,。答:()的概率為, ()求的均值為。19.【2012高考真題新課標(biāo)理18】(本小題滿分12分)某花店每天以每枝元的價(jià)格從農(nóng)場(chǎng)購進(jìn)若干枝玫瑰花,然后以每枝元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.(1)若花店一天購進(jìn)枝玫瑰花,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:枝,)的函
14、數(shù)解析式. (2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.(i)若花店一天購進(jìn)枝玫瑰花,表示當(dāng)天的利潤(rùn)(單位:元),求的分布列,數(shù)學(xué)期望及方差;(ii)若花店計(jì)劃一天購進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)16枝還是17枝?請(qǐng)說明理由.【答案】(1)當(dāng)時(shí), 當(dāng)時(shí), 得: (2)(i)可取, 的分布列為 (ii)購進(jìn)17枝時(shí),當(dāng)天的利潤(rùn)為 得:應(yīng)購進(jìn)17枝20.【2012高考真題山東理19】(19)(本小題滿分12分) 先在甲、乙兩個(gè)靶.某射手向甲靶射擊一次,命中的概率為,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中
15、的概率為,每命中一次得2分,沒有命中得0分.該射手每次射擊的結(jié)果相互獨(dú)立.假設(shè)該射手完成以上三次射擊.()求該射手恰好命中一次得的概率;()求該射手的總得分的分布列及數(shù)學(xué)期望.【答案】21.【2012高考真題福建理16】(本小題滿分13分)受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)產(chǎn)生每輛轎車的利潤(rùn)與該轎車首次出現(xiàn)故障的時(shí)間有關(guān),某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年,現(xiàn)從該廠已售出的兩種品牌轎車中隨機(jī)抽取50輛,統(tǒng)計(jì)書數(shù)據(jù)如下:將頻率視為概率,解答下列問題:(I)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;(II)若該廠生產(chǎn)的轎車均能售出,記住生產(chǎn)一輛
16、甲品牌轎車的利潤(rùn)為X1,生產(chǎn)一輛乙品牌轎車的利潤(rùn)為X2,分別求X1,X2的分布列;(III)該廠預(yù)計(jì)今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌轎車,若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種品牌的轎車?說明理由.【答案】22.【2012高考真題北京理17】(本小題共13分)近年來,某市為了促進(jìn)生活垃圾的風(fēng)分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)分垃圾箱,為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)1000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):“廚余垃圾”箱“可回收物”箱“其他垃圾”箱廚余垃圾400100100可回收物30
17、24030其他垃圾202060()試估計(jì)廚余垃圾投放正確的概率;()試估計(jì)生活垃圾投放錯(cuò)誤額概率;()假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為其中a0,=600。當(dāng)數(shù)據(jù)的方差最大時(shí),寫出的值(結(jié)論不要求證明),并求此時(shí)的值。(注:,其中為數(shù)據(jù)的平均數(shù))解:(1)由題意可知:。(2)由題意可知:。(3)由題意可知:,因此有當(dāng),時(shí),有23.【2012高考真題陜西理20】(本小題滿分13分)某銀行柜臺(tái)設(shè)有一個(gè)服務(wù)窗口,假設(shè)顧客辦理業(yè)務(wù)所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,對(duì)以往顧客辦理業(yè)務(wù)所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:從第一個(gè)顧客開始辦理業(yè)務(wù)時(shí)計(jì)時(shí)。(1)估計(jì)第三個(gè)顧客恰好等待4分鐘開始辦理業(yè)務(wù)的概率;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025民辦幼兒園教師聘用合同書范本
- 2025監(jiān)理工程師《合同管理》考點(diǎn)合同生效時(shí)間的規(guī)定
- 二零二五年度醫(yī)療項(xiàng)目項(xiàng)目經(jīng)理委托合同3篇
- 二零二五年度互聯(lián)網(wǎng)金融服務(wù)公司股權(quán)及業(yè)務(wù)轉(zhuǎn)讓合同3篇
- 2025年度紙裝修設(shè)計(jì)創(chuàng)新技術(shù)應(yīng)用合同3篇
- 2025年度企業(yè)財(cái)務(wù)分析與稅務(wù)籌劃咨詢服務(wù)合同2篇
- 2025年度醫(yī)療機(jī)構(gòu)與執(zhí)業(yè)藥師簽訂的藥品質(zhì)量追溯體系合作協(xié)議3篇
- 2025年度展臺(tái)搭建與展會(huì)現(xiàn)場(chǎng)布置合同3篇
- 二零二五年度軌道交通設(shè)備維修保養(yǎng)協(xié)議3篇
- 2025年度養(yǎng)殖技術(shù)培訓(xùn)與推廣合作合同3篇
- 2024全國(guó)能源行業(yè)火力發(fā)電集控值班員理論知識(shí)技能競(jìng)賽題庫(多選題)
- 因式分解(分組分解法)專項(xiàng)練習(xí)100題及答案
- 冶煉煙氣制酸工藝設(shè)計(jì)規(guī)范
- 《上帝擲骰子嗎:量子物理史話》超星爾雅學(xué)習(xí)通章節(jié)測(cè)試答案
- Unit13 同步教學(xué)設(shè)計(jì)2023-2024學(xué)年人教版九年級(jí)英語全冊(cè)
- 2023-2024學(xué)年河北省保定市滿城區(qū)八年級(jí)(上)期末英語試卷
- 2024成都中考數(shù)學(xué)第一輪專題復(fù)習(xí)之專題四 幾何動(dòng)態(tài)探究題 教學(xué)課件
- 2024合同范本之太平洋保險(xiǎn)合同條款
- 萬用表的使用
- TDT1062-2021《社區(qū)生活圈規(guī)劃技術(shù)指南》
- GB/T 12959-2024水泥水化熱測(cè)定方法
評(píng)論
0/150
提交評(píng)論