下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、相似三角形基本知識知識點一:放縮與相似形1. 圖形的放大或縮小,稱為圖形的放縮運動。2. 把形狀相同的兩個圖形說成是相似的圖形,或者就說是相似性。注意:相似圖形強調(diào)圖形形狀相同,與它們的位置、顏色、大小無關。 相似圖形不僅僅指平面圖形,也包括立體圖形相似的情況。 我們可以這樣理解相似形:兩個圖形相似,其中一個圖形可以看作是由另一個圖形放大或縮小得到的 若兩個圖形形狀與大小都相同,這時是相似圖形的一種特例全等形3. 相似多邊形的性質(zhì):如果兩個多邊形是相似形,那么這兩個多邊形的對應角相等,對應邊的長度成比例。注意:當兩個相似的多邊形是全等形時,他們的對應邊的長度的比值是1.知識點二:比例線段有關概
2、念及性質(zhì)(1)有關概念1、比:選用同一長度單位量得兩條線段。a、b的長度分別是m、n,那么就說這兩條線段的比是a:bm:n(或)2、比的前項,比的后項:兩條線段的比a:b中。a叫做比的前項,b叫做比的后項。說明:求兩條線段的比時,對這兩條線段要用同一單位長度。3、比例:兩個比相等的式子叫做比例,如4、比例外項:在比例(或a:bc:d)中a、d叫做比例外項。5、比例內(nèi)項:在比例(或a:bc:d)中b、c叫做比例內(nèi)項。6、第四比例項:在比例(或a:bc:d)中,d叫a、b、c的第四比例項。7、比例中項:如果比例中兩個比例內(nèi)項相等,即比例為(或a:bb:c時,我們把b叫做a和d的比例中項。8.比例線
3、段:對于四條線段a、b、c、d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d),那么,這四條線段叫做成比例線段,簡稱比例線段。(注意:在求線段比時,線段單位要統(tǒng)一,單位不統(tǒng)一應先化成同一單位)(2)比例性質(zhì)1.基本性質(zhì): (兩外項的積等于兩內(nèi)項積)2.反比性質(zhì): (把比的前項、后項交換)3.更比性質(zhì)(交換比例的內(nèi)項或外項):4.合比性質(zhì):(分子加(減)分母,分母不變)注意:實際上,比例的合比性質(zhì)可擴展為:比例式中等號左右兩個比的前項,后項之間發(fā)生同樣和差變化比例仍成立如:5.等比性質(zhì):(分子分母分別相加,比值不變.) 如果,那么注意:(1)此性質(zhì)的證明運用了“設法
4、” ,這種方法是有關比例計算,變形中一種常用方法 (2)應用等比性質(zhì)時,要考慮到分母是否為零 (3)可利用分式性質(zhì)將連等式的每一個比的前項與后項同時乘以一個數(shù),再利用等比性質(zhì)也成立知識點三:黃金分割1) 定義:在線段AB上,點C把線段AB分成兩條線段AC和BC(ACBC),如果,即AC2=AB×BC,那么稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比。其中0.618。2)黃金分割的幾何作圖:已知:線段AB.求作:點C使C是線段AB的黃金分割點.作法:過點B作BDAB,使;連結(jié)AD,在DA上截取DE=DB;在AB上截取AC=AE,則點C就是所求作的線段
5、AB的黃金分割點.黃金分割的比值為:.(只要求記?。?)矩形中,如果寬與長的比是黃金比,這個矩形叫做黃金矩形。知識點四:平行線分線段成比例定理 (一)平行線分線段成比例定理1.平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比.例. 已知l1l2l3, A D l1 B E l2 C F l3可得2.推論:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線)所得的對應線段成比例. (1) 是“A”字型(2) 是“8”字型 經(jīng)???,關鍵在于找由DEBC可得:.此推論較原定理應用更加廣泛,條件是平行.3.推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例.那
6、么這條直線平行于三角形的第三邊. (即利用比例式證平行線)4.定理:平行于三角形的一邊,并且和其它兩邊相交的直線,所截的三角形的三邊與原三角形三邊對應成比例. 5.平行線等分線段定理:三條平行線截兩條直線,如果在一條直線上截得的線段相等,難么在另一條直線上截得的線段也相等。 三角形一邊的平行線性質(zhì)定理定理:平行于三角形一邊的直線截其他兩邊所得的線段對應成比例。幾何語言 ABE中BDCE 簡記: 歸納: 和推廣:類似地還可以得到和 三角形一邊的平行線性質(zhì)定理推論 平行于三角形一邊的直線截其他兩邊所在的直線,截得的三角形的三邊與原三角形的三邊對應成比例.三角形一邊的平行線的判定定理三角形一邊平行線
7、判定定理 如果一條直線截三角形的兩邊所得的對應線段成比例,那么這條直線平行于三角形的第三邊.三角形一邊的平行線判定定理推論 如果一條直線截三角形兩邊的延長線(這兩邊的延長線在第三邊的同側(cè))所得的對應線段成比例,那么這條直線平行于三角形的第三邊.平行線分線段成比例定理1平行線分線段成比例定理:兩條直線被三條平行的直線所截,截得的對應線段成比例.用符號語言表示:ADBECF,.2平行線等分線段定理:兩條直線被三條平行的直線所截,如果在一直線上所截得的線段相等,那么在另一直線上所截得的線段也相等.用符號語言表示:. 重心定義:三角形三條中線相交于一點,這個交點叫做三角形的重心.重心的性質(zhì):三角形的重
8、心到一個頂點的距離,等于它到對邊中點的距離的兩倍.知識點三:相似三角形1、 相似三角形1)定義:如果兩個三角形中,三角對應相等,三邊對應成比例,那么這兩個三角形叫做相似三角形。幾種特殊三角形的相似關系:兩個全等三角形一定相似。兩個等腰直角三角形一定相似。兩個等邊三角形一定相似。兩個直角三角形和兩個等腰三角形不一定相似。補充:對于多邊形而言,所有圓相似;所有正多邊形相似(如正四邊形、正五邊形等等);2) 性質(zhì):兩個相似三角形中,對應角相等、對應邊成比例。3) 相似比:兩個相似三角形的對應邊的比,叫做這兩個三角形的相似比。 如ABC與DEF相似,記作ABC DEF。相似比為k。4)判定:定義法:對
9、應角相等,對應邊成比例的兩個三角形相似。三角形相似的預備定理:平行于三角形一邊的直線和其它兩邊相交,所構成的三角形與原三角形相似。 三角形相似的判定定理:判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似簡述為:兩角對應相等,兩三角形相似(此定理用的最多)判定定理2:如果一個三角形的兩條邊和另一個三角形的兩條邊對應成比例,并且夾角相等,那么這兩個三角形相似簡述為:兩邊對應成比例且夾角相等,兩三角形相似判定定理3:如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那么這兩個三角形相似簡述為:三邊對應成比例,兩三角形相似直角三角形相似判定定理:.斜邊與一條
10、直角邊對應成比例的兩直角三角形相似。.直角三角形被斜邊上的高分成的兩個直角三角形與原直角三角形相似,并且分成的兩個直角三角形也相似。 補充一:直角三角形中的相似問題:斜邊的高分直角三角形所成的兩個直角三角形與原直角三角形相似.射影定理:CD²=AD·BD, AC²=AD·AB,BC²=BD·BA(在直角三角形的計算和證明中有廣泛的應用).補充二:三角形相似的判定定理推論推論一:頂角或底角相等的兩個等腰三角形相似。 推論二:腰和底對應成比例的兩個等腰三角形相似。 推論三:有一個銳角相等的兩個直角三角形相似。 推論四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形都相似。 推論五:如果一個三角形的兩邊和其中一邊上的中線與另一個三角形的對應部分成比例,那么這兩個三角形相似。相似三角形的性質(zhì) 相似三角形對應角相等、對應邊成比例. 相似三角形對應高、對應角平分線、對應中線、周長的比都等于相似比(對應邊的比). 相似三角形對應面積的比等于相似比的平方.2、 相似的應用:位似1)定義:如果兩個多邊形不僅相似,而且對應頂點的連線相交于一點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,這時的相似比又稱為位似比。需注意:位似是一種具有位置關系的相似,所以兩個圖形是位似圖形,必定是相似圖形,而相似圖形不一定是位似圖形。兩個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手房買賣合同范本參考
- 打管樁分包勞務合同范本
- 月結(jié)采購合同
- 學校聘用舞蹈老師培訓合同
- 景觀石購銷合同范本
- 實驗室租賃合同
- 二手房購買房屋合同
- 貨物商品購銷的合同范本
- 熱感探測器與火災警示
- 消防力量調(diào)度和協(xié)同作戰(zhàn)
- 人教版五年級上冊小數(shù)除法豎式計算練習練習300題及答案
- 綜合素質(zhì)提升培訓全面提升個人綜合素質(zhì)
- 如何克服高中生的社交恐懼癥
- 聚焦任務的學習設計作業(yè)改革新視角
- 《監(jiān)理安全培訓》課件
- 2024高二語文期末試卷(選必上、中)及詳細答案
- 淋巴瘤患者的護理
- 水利工程建設管理概述課件
- 人美版初中美術知識點匯總九年級全冊
- 2022中和北美腰椎間盤突出癥診療指南的對比(全文)
- 乳房整形知情同意書
評論
0/150
提交評論