基本再生數(shù)實用PPT課件PPT課件_第1頁
基本再生數(shù)實用PPT課件PPT課件_第2頁
基本再生數(shù)實用PPT課件PPT課件_第3頁
基本再生數(shù)實用PPT課件PPT課件_第4頁
基本再生數(shù)實用PPT課件PPT課件_第5頁
已閱讀5頁,還剩37頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、 IntroductionThe basic reproduction ratio is the expected number of secondary cases produced, in a completely susceptible population, by a typical infective individual.Autonomous epidemic models 7, 31Specific infectious diseasesSexual diseases 20Tuberculosis in possums 13Dengue fever 12SARS 15, 24,

2、33, 40People travel among cities 1, 2Patchy models 32, 34-36第1頁/共42頁Periodic fluctuations (contact rates, birth rates, vaccination program )Intuitively, one may expect to use the basic reproduction number of the time-averaged autonomous system of a periodic epidemic model over a time period. Unfortu

3、nately, this average basic reproduction numberis applicable only in certain circumstances, but overestimates or underestimates infection risks in many other cases.The effective reproduction number is also used in the literature, which is defined as the average number of secondary cases arising from

4、a single typical infective introduced at time t into the population 11. Its magnitude is a useful indicator of both the risk of an epidemic and the effort required to control an infection. However, this number is not a threshold parameter to determine whether the diseasecan invade the susceptible po

5、pulation successfully.Recently, Bacar and Guernaoui presented a general definition of the basic reproduction number in a periodic environment4. The purpose of our current paper is to establish the basic reproduction ratio for a large class of periodic compartmental epidemic models and show that it i

6、s a threshold parameter for the local stability of the disease-free periodic solution, and even for the global dynamics under certain circumstances.第2頁/共42頁 The basic reproduction ratioWe consider a heterogeneous population whose individuals can be grouped into n homogeneous compartments. Let with e

7、ach xi 0, be the state of individuals in each compartment. We assume that the compartments can be divided into two types: infected compartments, labeled by i = 1, . . . ,m, and uninfected compartments, labeled by i = m + 1, . . . , n. Define Xs to be the set of all disease-free states: Xs := x 0 : x

8、i = 0, i = 1, . . . ,m. be the input rate of newly infected individuals in the ith compartment. be the input rate of individuals by other means (for example, births, immigrations) be the rate of transfer of individuals out of compartment i (for example, deaths, recovery and emigrations)Tnxxxx),.,(21

9、),( xtFi), ( xti), ( xti第3頁/共42頁The disease transmission model is governed by a non-autonomous ordinary differential system:第4頁/共42頁考慮周期線性系統(tǒng) 。其中, 連續(xù), 是以T為周期的周期函數(shù)。記其基本解矩陣為 。關于其零解的穩(wěn)定性討論起至關重要的作用。引理:存在非奇異可微周期矩陣p(t),以及一個常數(shù)矩陣Q,使得xtAdtdx)(nnijtatA)()()()(tATtA)(t.)()(Qtetpt 的零解穩(wěn)定性將xtAdtdx)(零解的穩(wěn)定性。轉化為Qydtdy

10、第5頁/共42頁第6頁/共42頁第7頁/共42頁有序Banach空間:設E為Banach空間,P為E中的閉凸錐,則可由P引出E中的序關系,Pxyyx使E按 構成有序Banach空間。此時錐xExP稱為E的正元錐。第8頁/共42頁第9頁/共42頁Ascoli-Arzela theorem:1 ,0CF 是列緊的當且僅當F為一致有界的且是等度連續(xù)的。第10頁/共42頁第11頁/共42頁第12頁/共42頁第13頁/共42頁第14頁/共42頁第15頁/共42頁第16頁/共42頁第17頁/共42頁第18頁/共42頁第19頁/共42頁第20頁/共42頁第21頁/共42頁第22頁/共42頁第23頁/共42頁第24頁/共42頁 Three examples第25頁/共42頁第26頁/共42頁第27頁/共42頁第28頁/共42頁第29頁/共42頁

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論