版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、1目錄第一章 空間幾何體1.1空間幾何體的結(jié)構(gòu)1.1.1多面體的結(jié)構(gòu)特征.11.1.2旋轉(zhuǎn)體與簡單組合體的結(jié)構(gòu)特征 .61.2空間幾何體的三視圖和直觀圖1.2.1中心投影與平行投影1.2.2空間幾何體的三視圖.101.2.3空間幾何體的直觀圖. 151.3空間幾何體的表面積與體積第 1 課時 柱體、錐體、臺體的表面積 .19第 2 課時柱體、錐體、臺體、球的體積與球的表面積 .23習(xí)題課空間幾何體.27第二章 點(diǎn) 直線 平面之間的位置關(guān)系2.1.1平 面292.1.2空間中直線與直線之間的位置關(guān)系 332.1.3空間中直線與平面之間的位置關(guān)系2.1.4平面與平面之間的位置關(guān)系 372.2.1直
2、線與平面平行的判定2.2.2平面與平面平行的判定 402.2.3直線與平面平行的性質(zhì) 442.2.4平面與平面平行的性質(zhì) 472.3.1直線與平面垂直的判定 502.3.2平面與平面垂直的判定 532. 3.3 直線與平面垂直的性質(zhì)2.3.4平面與平面垂直的性質(zhì) 57第二章 復(fù)習(xí)課60第三章 直線與方程3.1.1 傾斜角與斜率 643.1.2兩條直線平行與垂直的判定 673.2.1直線的點(diǎn)斜式方程 703.2.2直線的 兩點(diǎn)式方程 733.2.3直線的一般式方程 763.3.1兩條直線的交點(diǎn)坐標(biāo)2332 兩點(diǎn)間的距離 .793.3.3 點(diǎn)到直線的距離3.3.4 兩條平行直線間的距離 .82第四
3、章 圓與方程4.1.1圓的標(biāo)準(zhǔn)方程 . 854.1.2圓的一般方程 .884.2.1直線與圓的位置關(guān)系 .914.2.2圓與圓的位置關(guān)系 .944.2.3 直線與圓的方程的應(yīng)用 .974.3.1空間直角坐標(biāo)系 .1004.3.2空間兩點(diǎn)間的距離公式 . 103章末復(fù)習(xí) . 1061第一章空間幾何體1.1 空間幾何體的結(jié)構(gòu)第 1 課時多面體的結(jié)構(gòu)特征【學(xué)習(xí)目標(biāo)】1認(rèn)識組成我們的生活世界的各種各樣的多面體;2.認(rèn)識和把握棱柱、棱錐、棱臺的幾何結(jié)構(gòu)特征;3.了解多面體可按哪些不同的標(biāo)準(zhǔn)分類,可以分成哪些類別.【知識梳理】1.空間幾何體(1)概念:如果只考慮物體的_ 和 ,而不考慮其他因素, 那么由這
4、些物體抽象出來的空間圖形 就叫做空間幾何體.特殊的幾何體1多面體:一般地,由若干個 _ 圍成的幾何體叫做多面體圍成多面體的各個多邊形叫做多面體的 _;相鄰兩個面的 _ 叫做多面體的棱;棱與棱的 _ 叫做多面體的頂點(diǎn).2旋轉(zhuǎn)體:由一個平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)所形成的 _叫做旋轉(zhuǎn)體,這條定直線叫做旋轉(zhuǎn)體的 _2多面體的結(jié)構(gòu)特征棱柱的結(jié)構(gòu)特征:一般地,有兩個面 _ ,其余各面都是 _ ,并且每相鄰兩個四邊形的公共邊都 _ ,由這些面所圍成的多面體叫做棱柱.(2)棱錐的結(jié)構(gòu)特征: 一般地,有一個面是 _ ,其余各面都是 _ ,由這些面所圍成的多面體叫做棱錐.(3)棱臺的結(jié)構(gòu)特征:用一個_
5、 于棱錐底面的平面去截棱錐, _之間的部分,這樣的多面體叫做棱臺.思考探究情境導(dǎo)學(xué)在我們周圍存在著各種各樣的物體,它們都占據(jù)著空間的一部分. 如果我們只考慮這些物體的形狀和大小,而不考慮其他因素,那么由這些物體抽象出來的空間圖形就叫做空間幾何體.本節(jié)課我們主要從結(jié)構(gòu)特征方面認(rèn)識最基本的空間幾何體.探究點(diǎn)一空間幾何體的類型思考1觀察下列圖片,你知道這圖片在幾何中分別叫什么名稱嗎?2答:思考2如果將這些幾何體進(jìn)行適當(dāng)分類,你認(rèn)為可以分成哪幾種類型? 答:思考3觀察圖(2)(5)(7)(9)(13)(14)(15)(16)中組成幾何體的每個面的特點(diǎn),以及面與面之間的關(guān)系, 你能歸納出它們有何共3同特
6、點(diǎn)嗎?答:小結(jié)我們把由若干個平面多邊形圍成的幾何體叫做多面體 圍成多面體的各個多邊形叫做多面體 的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)思考4觀察圖(1)(3)(4)(6)(8)(10)(11)(12)中組成幾何體的每個面有何共同特點(diǎn)?答:小結(jié)由一個平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)所形成的封閉幾何體叫做旋轉(zhuǎn)體 這條定 直線叫做旋轉(zhuǎn)體的軸探究點(diǎn)二 棱柱的結(jié)構(gòu)特征思考1我們把下面的多面體取名為棱柱,據(jù)此你能給棱柱下一個定義嗎?4答:思考2為了研究方便,我們把棱柱中兩個互相平行的面叫做棱柱的底面,其余各面叫做棱柱的側(cè) 面,相鄰側(cè)面的公共邊叫做棱柱的側(cè)棱,側(cè)面與底面
7、的公共頂點(diǎn)叫做棱柱的頂點(diǎn)你能指出上面棱 柱的底面、側(cè)面、側(cè)棱、頂點(diǎn)嗎?答:思考3棱柱上、下兩個底面的形狀大小如何?各側(cè)面的形狀如何?答:思考4個頂點(diǎn)?答:一個棱柱至少有幾個側(cè)面?一個N棱柱分別有多少個底面和側(cè)面?有多少條側(cè)棱?有多少思考5答:有兩個面互相平行,其余各面都是平行四邊形的多面體一定是棱柱嗎?小結(jié)在棱柱中,底面是三角形、四邊形、五邊形的棱柱分別叫做三棱柱、 四棱柱、五棱柱 思考1圖1中的六棱柱用各頂點(diǎn)字母可表示為棱柱ABCDEFABCDEF.例1試判斷下列說法是否正確:(1)棱柱中互相平行的兩個面叫做棱柱的底面;(2)棱柱的側(cè)棱都相等,側(cè)面是平行四邊形答:反思與感悟概念辨析題常用方法
8、:(1 )利用常見幾何體舉反例;(2)從底面多邊形的形狀、側(cè)面形 狀及它們之間的位置關(guān)系、側(cè)棱與底面的位置關(guān)系等角度緊扣定義進(jìn)行判斷跟蹤訓(xùn)練1根據(jù)下列關(guān)于空間幾何體的描述,說出幾何體名稱:(1)由6個平行四邊形圍成的幾何體(2)由8個面圍成,其中兩個面是平行且全等的六邊形,其余6個面都是平行四邊形答:探究點(diǎn)三 棱錐的結(jié)構(gòu)特征思考1我們把下面的多面體取名為棱錐,據(jù)此你能給棱錐下一個定義嗎?圖1圖25思考2答:參照棱柱的說法,棱錐的底面、側(cè)面、側(cè)棱、頂點(diǎn)分別是什么含義?你能作圖加以說明嗎?思考3示思考 答:類比棱柱的分類,棱錐如何根據(jù)底面多邊形的邊數(shù)進(jìn)行分類?如何用棱錐各頂點(diǎn)的字母表1中的三個棱錐
9、?思考4頂點(diǎn)?答:一個棱錐至少有幾個面? 一個N棱錐分別有多少個底面和側(cè)面?有多少條側(cè)棱?有多少個思考5答:用一個平行于棱錐底面的平面去截棱錐,截面與底面的形狀關(guān)系如何?思考6答:棱柱、棱錐分別具有一些什么幾何性質(zhì)?例2如圖,幾何體中,四邊形AAIBIB為邊長為3的正方形,CCi=2,-Z-良CCi/AAI,CCiII BB1,請你判斷這個幾何體是棱柱嗎?若是棱柱,指出.卄是幾棱柱.若不是棱柱,請你試用一個平面截去一部分,使剩余部分是一 匯一3疝個側(cè)棱長為2的三棱柱,并指出截去的幾何體的特征在立體圖中畫出截面.答:6反思與感悟認(rèn)識一個幾何體,要看它的結(jié)構(gòu)特征, 并且要結(jié)合它各面的具體形狀,棱與
10、棱之間的關(guān)系,分析它是由哪些幾何體組成的組合體,并能用平面分割開.跟蹤訓(xùn)練2若三棱錐的底面為正三角形,側(cè)面為等腰三角形,側(cè)棱長為2,底面周長為9,求棱錐的高.(過頂點(diǎn)向底面作垂線,頂點(diǎn)與垂足的距離)答:探究點(diǎn)四 棱臺的結(jié)構(gòu)特征思考1用一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分形成另一個多面體,這樣 的多面體叫做棱臺.那么棱臺有哪些結(jié)構(gòu)特征?答:思考2仿照棱錐中關(guān)于底面、側(cè)面、側(cè)棱、頂點(diǎn)的定義,如何定義棱臺的底面、側(cè)面、側(cè)棱、頂 點(diǎn)呢?答:思考3根據(jù)三棱錐、四棱錐、五棱錐的定義,如何定義三棱臺、四棱臺、五棱臺?如何 用字母表示棱臺?答:思考4既然棱柱、棱錐、棱臺都是多面體,它們在結(jié)構(gòu)
11、上有哪些相同點(diǎn)和不同點(diǎn)?三者的關(guān)系如 何?當(dāng)?shù)酌姘l(fā)生變化時,它們能否相互轉(zhuǎn)化?答:例3有下列三個命題:1用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺;兩個底面平行且相似,其余各面都 是梯形的多面體是棱臺;有兩個面互相平行,其余四個面都是等腰梯形的六面體是棱臺.其中正確的有()A.0個B.1個C.2個D.3個反思與感悟一個棱臺的基本特征是上、 下底面平行且相似, 側(cè)棱延長后交于一點(diǎn), 這是判斷幾何 體是否為棱臺的依據(jù).跟蹤訓(xùn)練3已知四棱臺的上底面、下底面分別是邊長為4,8的正方形,各側(cè)棱長均相等,且側(cè)棱長為.17,求四棱臺的高.答:7【隨堂練習(xí)】1.下列說法中正確的是()A.棱柱的面中,至
12、少有兩個面互相平行B.棱柱中兩個互相平行的平面一定是棱柱的底面C.棱柱中一條側(cè)棱就是棱柱的高D.棱柱的側(cè)面一定是平行四邊形,但它的底面一定不是平行四邊形2.下列說法中,正確的是()A.有一個底面為多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,由這些面所圍成的幾何體是棱 錐B.用一個平面去截棱錐,棱錐底面與截面之間的部分是棱臺C.棱柱的側(cè)面都是平行四邊形,而底面不是平行四邊形D.棱柱的側(cè)棱都相等,側(cè)面都是全等的平行四邊形3.下列說法錯誤的是()A.多面體至少有四個面B.九棱柱有9條側(cè)棱,9個側(cè)面,側(cè)面為平行四邊形C.長方體、正方體都是棱柱D.三棱柱的側(cè)面為三角形4._對棱柱而言,下列說法正確的序號
13、是.有兩個平面互相平行,其余各面都是平行四邊形.所有的棱長都相等.棱柱中至少有2個面的形狀完全相同.相鄰兩個面的交線叫做側(cè)棱.【課堂小結(jié)】1.在理解的基礎(chǔ)上,要牢記棱柱、棱錐、棱臺的定義,能夠根據(jù)定義判斷幾何體的形狀.2.對幾何體定義的理解要準(zhǔn)確,另外,要想真正把握幾何體的結(jié)構(gòu)特征,必須多角度、全面地分析,多觀察實(shí)物,提高空間想象能力.第 2 課時旋轉(zhuǎn)體與簡單組合體的結(jié)構(gòu)特征【學(xué)習(xí)目標(biāo)】1認(rèn)識組成我們生活的世界的各種各樣的旋轉(zhuǎn)體;2認(rèn)識和把握圓柱、圓錐、圓臺、球體的幾何結(jié)構(gòu)特征.【知識梳理】1.圓柱及其有關(guān)的概念以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的面所圍成的旋轉(zhuǎn)體叫做.叫做圓柱的軸
14、;垂直于軸的邊旋轉(zhuǎn)而成的圓面叫做圓柱的 _ ;平行于軸的邊旋轉(zhuǎn)而成的曲面叫做圓柱的_;無論旋轉(zhuǎn)到什么位置,不垂直于軸的邊都叫做圓柱側(cè)面的 _.2.圓錐的概念以直角三角形的一條直角邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的面所圍成的旋轉(zhuǎn)體叫做3.圓臺的概念 用平行于圓錐底面的平面去截圓錐,底面與截面之間的部分叫做也有軸、底面、側(cè)面、母線.與圓柱和圓錐一樣,圓臺84.球及其有關(guān)的概念以半圓的直徑所在直線為 _ ,半圓面旋轉(zhuǎn)一周形成的旋轉(zhuǎn)體叫做 _ ,簡稱球半圓的圓心叫做球的 _ ,半圓的半徑叫做球的半徑圓的直徑叫做球的 _球常用表示球心的字母0表示.5.簡單組合體(1)概念:由_ 組合而成的幾何體叫做
15、簡單組合體.常見的簡單組合體大多是由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組成的.(2)基本形式:一種是由簡單幾何體 _ 而成,另一種是由簡單幾何體 _或_一部分而成.思考探究情境導(dǎo)學(xué)舉世聞名的比薩斜塔是意大利的一個著名景點(diǎn).它的構(gòu)造從外形上看是由八個圓柱組合成的一個組合體,我們周圍的很多建筑物和它一樣,也都是由一些簡單幾何體組合而成的組合體.本節(jié)我們就來學(xué)習(xí)旋轉(zhuǎn)體與簡單組合體的結(jié)構(gòu)特征.探究點(diǎn)一圓柱的結(jié)構(gòu)特征思考1如圖所示的空間幾何體叫做圓柱,那么圓柱是怎樣形成的呢?與圓柱有關(guān)的幾個概念是如 何定義的?答:思考2如圖,平行于圓柱底面的截面,經(jīng)過圓柱任意兩條母線的截面分別是什么圖形?答:探究點(diǎn)
16、二 圓錐的結(jié)構(gòu)特征思考1類比圓柱的定義,結(jié)合下圖你能給圓錐下個定義嗎?9答:思考2類比圓柱的軸、底面、側(cè)面、母線的定義,如何定義圓錐的軸、底面、側(cè)面、母線? 答:思考3經(jīng)過圓錐的任意兩條母線的截面是什么圖形?圓錐如何用字母表示? 答:探究點(diǎn)三 圓臺的結(jié)構(gòu)特征思考1用一個平行于圓錐底面的平面去截圓錐,截面與底面之間的部分叫做圓臺圓臺可以由什 么平面圖形旋轉(zhuǎn)而形成?答:10思考2與圓柱和圓錐一樣,圓臺也有軸、底面、側(cè)面、母線,它們的含義分別如何?圓臺如何用 字母表示?答:思考3圓柱、圓錐、圓臺都是旋轉(zhuǎn)體,它們在結(jié)構(gòu)上有哪些相同點(diǎn)和不同點(diǎn)?三者的關(guān)系如何? 當(dāng)?shù)酌姘l(fā)生變化時,它們能否互相轉(zhuǎn)化?答:例
17、1用一個平行于圓錐SO底面的平面截這個圓錐,截得圓臺上、下底面的面積之比為1:16,截去的圓錐的母線長是3 cm,求圓臺的母線長.答:反思與感悟用平行于底面的平面去截柱、錐、臺等幾何體,注意抓住截面的性質(zhì)(與底面全等或相似),同時結(jié)合旋轉(zhuǎn)體中的軸截面(經(jīng)過旋轉(zhuǎn)軸的截面)的幾何性質(zhì),利用相似三角形中的相似比, 列出相關(guān)幾何變量的方程組而解得跟蹤訓(xùn)練1將例1中“截去的圓錐的母線長是3 cm”改為“圓錐SO的母線長為16 cm”其余條件 不變,則結(jié)果如何?答:探究點(diǎn)四 球的結(jié)構(gòu)特征思考 類比圓柱、圓錐、圓臺的定義,球是如何定義的?球心及球半徑是指什么?如何用字母表示 球?答:例2判斷下列各命題是否正
18、確:(1 )三棱柱有6個頂點(diǎn),三棱錐有4個頂點(diǎn);(2)圓柱上底面圓上任一點(diǎn)與下底面圓上任一點(diǎn)的連線都是圓柱的母線;(3)一直角梯形繞下底所在直線旋轉(zhuǎn)一周,所形成的曲面圍成的幾何體是圓臺;(4)圓錐、圓臺中過軸的截面是軸截面,圓錐的軸截面是等腰三角形,圓臺的軸截面是等腰梯形;(5)到定點(diǎn)的距離等于定長的點(diǎn)的集合是球答:跟蹤訓(xùn)練2下列敘述中正確的個數(shù)是()1以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐;2以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺;3圓柱、圓錐、圓臺的底面都是圓;4用一個平面去截圓錐,得到一個圓錐和一個圓臺.A0 B1 C2 D3探究點(diǎn)五 簡單組合體的結(jié)構(gòu)特征 思考1現(xiàn)實(shí)生活中的物
19、體多數(shù)是由柱體、錐體、臺體、球體等簡單幾何體組合而成的,這些幾何 體叫做簡單組合體那么這些組合體是怎樣構(gòu)成的?答:思考2觀察教材圖1.111中(1)、(3)兩物體所示的幾何體,你能說出它們各由哪些簡單幾何體組 合而成嗎?答:11例3描述下列幾何體的結(jié)構(gòu)特征答:跟蹤訓(xùn)練3數(shù)學(xué)奧林匹克競賽中,若你獲得第一名,被授予如圖所示的獎杯,那么,請你介紹一 下你所得的獎杯是由哪些簡單幾何體組成的?答:隨堂練習(xí)】1下圖是由哪個平面圖形旋轉(zhuǎn)得到的( )122下列說法正確的是( )A.圓錐的母線長等于底面圓直徑B.圓柱的母線與軸垂直C.圓臺的母線與軸平行D.球的直徑必過球心3.下面幾何體的截面一定是圓面的是()A
20、.圓臺B.球C.圓柱D.棱柱4以下說法中:1圓臺上底面的面積與下底面的面積之比一定小于1.2矩形繞任意一條直線旋轉(zhuǎn)都可以圍成圓柱3過圓臺側(cè)面上每一點(diǎn)的母線都相等正確的序號為 _5.如圖所示的圖形繞虛線旋轉(zhuǎn)一周后形成的立體圖形分別是由哪些簡單幾何體組成的?思考探究13【課堂小結(jié)】(1)圓臺、棱臺可以看作是用一平行于底面的平面去截圓錐、棱錐得到的底面與截面之間的部分;圓臺的母線、棱臺的側(cè)棱延長后必交于同一點(diǎn),若不滿足該條件,則一定不是圓臺或棱臺.(2)球面與球是兩個不同的概念,球面是半圓以它的直徑所在直線為軸旋轉(zhuǎn)一周形成的曲面,也可以 看作與定點(diǎn)(球心)的距離等于定長(半徑)的所有點(diǎn)的集合而球體不
21、僅包括球的表面,同時還包括球 面所包圍的空間. 1.2 空間幾何體的三視圖和直觀圖1.2.1 中心投影與平行投影 1.2.2 空間幾何體的三視圖【學(xué)習(xí)目標(biāo)】1了解投影、中心投影和平行投影的概念;2能畫出簡單幾何體的三視圖,能識別三視圖所表示的立體模型.【知識梳理】投影(1)投影的定義由于光的照射,在不透明物體后面的屏幕上可以留下這個物體的_ ,這種現(xiàn)象叫做投影其中,我們把光線叫做_ ,把留下物體影子的屏幕叫做 _ .(2)投影的分類1中心投影:光由 _ 向外散射形成的投影,叫做中心投影中心投影的投影線交于 _.2平行投影:在一束_ 光線照射下形成的投影,叫做平行投影.平行投影的 _ 是平行的.
22、在平行投影中,投影線正對著投影面時,叫做 _ ,否則叫做 _.2.三視圖(1)三視圖的分類1正視圖:光線從幾何體的前面向后面正投影,得到投影圖,這種投影圖叫做幾何體的_2側(cè)視圖:光線從幾何體的左面向右面正投影,得到投影圖,這種投影圖叫做幾何體的_3俯視圖:光線從幾何體的上面向下面正投影,得到投影圖,這種投影圖叫做幾何體的_(2)三視圖的畫法要求1三視圖的正視圖、俯視圖、側(cè)視圖分別是從物體的 _、_ 、_ 看到的物體輪廓線的正投影圍成的平面圖形.2一個物體的三視圖的排列規(guī)則是:俯視圖放在正視圖的 _,長度與 _的長度一樣,側(cè)視圖放在正視圖的右邊,高度與 _ 的高度一樣,寬度與 _的寬度一樣.3在
23、繪制三視圖的時候,分界線和可見輪廓線都用實(shí)線畫出,被遮擋部分用虛線畫出i4情境導(dǎo)學(xué)從不同角度看廬山,有古詩: “ 橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同;不識廬山真面目, 只緣身在此山中 ” 對于我們所學(xué)幾何體,從不同方向看到的形狀也各有不同,我們通常用三視圖 和直觀圖來把幾何體畫在紙上探究點(diǎn)一 中心投影與平行投影導(dǎo)引 在建筑、機(jī)械等工程圖中,需要用平面圖形反映空間幾何體的形狀和大小,在作圖技術(shù)上這 也是一個幾何問題,要想知道這方面的基礎(chǔ)知識,請先閱讀教材第11頁,然后思考下列問題思考1什么是投影、投影線、投影面嗎?答:思考2不同的光源發(fā)出的光線是有差異的, 其中燈泡發(fā)出的光線與手電筒發(fā)出的光線有什么
24、不同? 答:小結(jié)我們把光由一點(diǎn)向外散射形成的投影叫做中心投影; 把在一束平行光線照射下形成的投影叫 做平行投影思考3用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?答:思考4用燈泡照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大 小有什么關(guān)系?當(dāng)物體與燈泡的距離發(fā)生變化時,影子的大小會有什么不同?答:思考5用手電筒照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、 大小有什么關(guān)系?當(dāng)物體與手電筒的距離發(fā)生變化時,影子的大小會有變化嗎? 答:思考6一個與投影面平行的平面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化?一個與 投影面不平行的平
25、面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化?答:例1如圖所示, 在正方體ABCDAIBICIDI中,E、F分別是AAi、CiDi的中點(diǎn),G是正方形BCCiBi的中心, 則四邊形AGFE在該正方體的各個面上的投影可能是圖中的 _ (填序號)15反思與感悟畫出一個圖形在一個平面上的投影的關(guān)鍵是確定該圖形的關(guān)鍵點(diǎn), 如頂點(diǎn)等, 畫出這 些關(guān)鍵點(diǎn)的投影,再依次連接即可得此圖形在該平面上的投影如果對平行投影理解不充分,做該 類題目容易出現(xiàn)不知所措的情形,避免出現(xiàn)這種情況的方法是依據(jù)平行投影的含義,借助于空間想 象來完成跟蹤訓(xùn)練1如圖所示,E、F分別為正方體面ADDA、面BCCB的中心,則四邊形B
26、FDE在該正方體的各個面上的投影可能是圖(2)中的 _探究點(diǎn)二 柱、錐、臺、球的三視圖導(dǎo)引 把一個空間幾何體投影到一個平面上,可以獲得一個平面圖形從多個角度進(jìn)行投影就能較 好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側(cè)面和上面思考1如圖,設(shè)長方體的長、寬、高分別為a、b、c,那么其三視圖分別是什么?16答:思考2三視圖,分別反映物體的哪些關(guān)系(上下、左右、前后)?哪些數(shù)量(長、寬、高)?答:小結(jié)一般地,一個幾何體的正視圖、側(cè)視圖和俯視圖的長度、寬度和高度的關(guān)系為:正側(cè)等高, 正俯等長,側(cè)俯等寬思考3圓柱、圓錐、圓臺的三視圖分別是什么?答:17思考4球的三視圖是什么?下列三視圖表示一
27、個什么幾何體?探究點(diǎn)三 簡單組合體的三視圖思考1在簡單組合體中,從正視、側(cè)視、俯視等角度觀察,有些輪廓線和棱能看見,有些輪廓線 和棱不能看見,在畫三視圖時怎樣處理?思考2如圖所示,將一個長方體截去一部分,這個幾何體的三視圖如何畫出?(標(biāo)出字母)例2如圖,設(shè)所給的方向?yàn)槲矬w的正前方,試畫出它的三視圖.答:反思與感悟在畫三視圖時,務(wù)必做到正(視圖)側(cè)(視圖)高平齊,正(視圖)俯(視圖)長對正,俯(視圖)側(cè)(視圖)寬相等.習(xí)慣上將正視圖與側(cè)視圖畫在同一水平位置上,俯視圖在正視圖的正下方.跟蹤訓(xùn)練2某幾何體的正視圖和側(cè)視圖均如圖所示,則該幾何體的俯視圖不可能是()(單18探究點(diǎn)四將三視圖還原成幾何體例
28、3說出下面的三視圖表示的幾何體的結(jié)構(gòu)特征.答:反思與感悟通常要根據(jù)俯視圖判斷幾何體是多面體還是旋轉(zhuǎn)體,再結(jié)合正視圖和側(cè)視圖確定具體的幾何結(jié)構(gòu)特征,最終確定是簡單幾何體還是簡單組合體.思考答:F圖是簡單組合體的三視圖,想象它們表示的組合體的結(jié)構(gòu)特征,i9跟蹤訓(xùn)練3下圖是一個物體的三視圖,試說出物體的形狀答:【隨堂練習(xí)】1.如圖所示,在正方體ABCDAiBiCiDi中,M,N分別是BBi,BC的中點(diǎn),則圖中陰影部分在平 面ADDiAi上的正投影是()2.某幾何體的三視圖如圖所示,那么這個幾何體是()20A三棱錐B四棱錐C四棱臺D三棱臺3將正方體(如圖(1)所示)截去兩個三棱錐, 得到如圖(2)所示
29、的幾何體,4一個幾何體的三視圖如圖所示,則該幾何體可以是則該幾何體的側(cè)視圖為( )()215如圖,四棱錐的底面是正方形,頂點(diǎn)在底面上的射影是底面正方形的中心,試畫出其三視圖【課堂小結(jié)】1.三視圖的正視圖、側(cè)視圖、俯視圖是分別從幾何體的正前方、正左方、正上方觀察幾何體畫出的 輪廓線,畫幾何體的要求是正視圖、俯視圖長對正,正視圖、側(cè)視圖高平齊,俯視圖、側(cè)視圖寬相 等,前后對應(yīng),畫出的三視圖要檢驗(yàn)是否符合“長對正、高平齊、寬相等 ”的基本特征.222幾何體的三視圖的畫法為:先畫出兩條互相垂直的輔助坐標(biāo)軸,在第二象限畫出正視圖;根據(jù)“正、俯兩圖長對正”的原則,在第三象限畫出俯視圖;根據(jù)“正、側(cè)兩圖高平
30、齊”的原則,在第一象限畫出側(cè)視圖.3.看得見部分的輪廓線畫實(shí)線,看不見部分的輪廓線畫虛線.1.2.3 空間幾何體的直觀圖目標(biāo)1.掌握斜二測畫法的作圖規(guī)則;2會用斜二測畫法畫出簡單幾何體的直觀圖.【知識梳理】1.畫平面圖形直觀圖的步驟在已知圖形中取互相垂直的x軸和y軸,兩軸相交于點(diǎn)O.畫直觀圖時,把它們畫成對應(yīng)的x軸與y軸,兩軸交于點(diǎn)0,且使/xOy=45或135,它們確定的平面表示水平面.已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成平行于x軸或y軸的線段.(3)已知圖形中平行于x軸的線段,在直觀圖中保持原長度 _,平行于y軸的線段,長度為原來的_.2.立體圖形的直觀圖的畫法畫立體圖形的
31、直觀圖,在畫軸時,要多畫一條與平面xOy垂直的軸Oz.且平行于0z的線段長度.其他同平面圖形的畫法.思考探究情境導(dǎo)學(xué)空間幾何體除了用三視圖表示外,更多的是用直觀圖來表示. 空間圖形能否在平面中畫出來,使得既富有立感,又能表達(dá)出圖形各主要部分的位置關(guān)系和度量關(guān)系呢?這就是空間幾何體 的直觀圖.本節(jié)我們就來研究這個問題.探究點(diǎn)一水平放置的平面圖形的畫法導(dǎo)引 用來表示空間圖形的平面圖叫空間圖形的直觀圖,要畫空間幾何體的直觀圖,先要學(xué)會水平 放置的平面圖形的畫法.思考1把一個矩形水平放置,從適當(dāng)?shù)慕嵌扔^察,給人以平行四邊形的感覺,如圖.比較兩圖,其中哪些線段之間的位置關(guān)系、數(shù)量關(guān)系發(fā)生了變化?哪些沒有
32、發(fā)生變化?答:23思考2把一個直角梯形水平放置得其直觀圖如下,比較兩圖,其中哪些線段之間的位置關(guān)系、數(shù) 量關(guān)系發(fā)生了變化?哪些沒有發(fā)生變化?答:思考3閱讀教材16頁中的例1,然后自主作出水平放置的正六邊形的直觀圖 答:小結(jié)上述畫水平放置的平面圖形的直觀圖的方法叫做斜二測畫法,斜二測畫法的基本步驟和規(guī) 則:(1)建坐標(biāo)系,定水平面;(2)與坐標(biāo)軸平行的線段保持平行;24(3)水平線段等長,豎直線段減半思考4斜二測畫法可以畫任意多邊形水平放置的直觀圖,如果把一個圓水平放置,看起來像什么 圖形?畫出水平放置的圓的直觀圖答:例1用斜二測畫法畫邊長為4 cm的水平放置的正三角形的直觀圖答:反思與感悟此類
33、問題的解題步驟是:建系、定點(diǎn)、連線成圖要注意選取恰當(dāng)?shù)淖鴺?biāo)原點(diǎn),能使 整個作圖變得簡便跟蹤訓(xùn)練1將例1中三角形放置成如圖所示,則直觀圖與例1中的還一樣嗎?答:25探究點(diǎn)二 空間幾何體的直觀圖的畫法例2用斜二測畫法畫長、寬、高分別為4 cm、3 cm、2 cm的長方體ABCDA BCD的直觀圖.答:反思與感悟直觀圖中應(yīng)遵循的基本原則:(1)用斜二測畫法畫空間圖形的直觀圖時,圖形中平行于x軸、y軸、z軸的線段在直觀圖中應(yīng)分別畫成平行于x軸、y軸、z軸的線段;一 一 一1(2)平行于x軸、z軸的線段在直觀圖中長度保持不變,平行于y軸的線段長度變?yōu)樵瓉淼?6跟蹤訓(xùn)練2如下圖,是一個空間幾何體的三視圖,
34、請用斜二測畫法畫出它的直觀圖.答:答:27例3如圖, 一個平面圖形的水平放置的斜二測直觀圖是一個等腰梯形, 它的底角為45,兩腰和上 底邊長均為1,求這個平面圖形的面積28反思與感悟解答此類題目的關(guān)鍵是首先要能夠?qū)⑺椒胖玫钠矫鎴D形的直觀圖還原為原來的實(shí) 際圖形,其依據(jù)就是逆用斜二測畫法,也就是使平行于x軸的線段的長度不變,而平行于y軸的線段長度變?yōu)樵瓉淼?倍.跟蹤訓(xùn)練3已知ABC的平面直觀圖ABC是邊長為a的正三角形,那么原厶ABC的面積a a a a332332 6-26-22 2a a3 3一4 4B BA.C.【隨堂練習(xí)】1已知一個正方形的直觀圖是一個平行四邊形,其中有一邊長為4,則此
35、正方形的面積為()A16B64C16或64D.無法確定2.利用斜二測畫法畫出邊長為3 cm的正方形的直觀圖,正確的是圖中的()2 2D3.已知兩個圓錐,底面重合在一起(底面平行于水平面),其中一個圓錐頂點(diǎn)到底面的距離為2 cm,另一個圓錐頂點(diǎn)到底面的距離為3 cm,則其直觀圖中這兩個頂點(diǎn)之間的距離為()A.2 cmB.3 cmC.2.5 cmD.5 cm4.如圖所示,ABC是水平放置的平面圖形的斜二測直觀圖,將其還原成平面圖形.29答:30【課堂小結(jié)】1斜二測畫法是聯(lián)系直觀圖和原圖形的橋梁,可根據(jù)它們之間的可逆關(guān)系尋找它們的聯(lián)系;在求直 觀圖的面積時,可根據(jù)斜二測畫法,畫出直觀圖,從而確定其高
36、和底邊等,而求原圖形的面積可把 直觀圖還原為原圖形2在用斜二測畫法畫直觀圖時, 平行線段仍然平行, 所畫平行線段之比仍然等于它的真實(shí)長度之比, 但所畫夾角大小不一定是其真實(shí)夾角大小1.3 空間幾何體的表面積與體積第 1 課時 柱體、錐體、臺體的表面積目標(biāo)1.通過對柱、錐、臺體的研究,掌握柱、錐、臺體的表面積的求法;2.了解柱、錐、臺體的表31面積計(jì)算公式;能運(yùn)用柱、錐、臺的表面積公式進(jìn)行計(jì)算和解決有關(guān)實(shí)際問題;3培養(yǎng)空間想象能力和思維能力.【知識梳理】1.棱柱、棱錐、棱臺的表面積棱柱、棱錐、棱臺是由多個 _ 圍成的多面體,它們的表面積就是各個面的面積的_2.圓柱、圓錐、圓臺的側(cè)面展開圖圓柱、圓
37、錐、圓臺的側(cè)面展開圖分別是 _、_、_ _3.旋轉(zhuǎn)體的表面積名稱圖形公式圓柱底面積:S底= 側(cè)面積:S側(cè)= 表面積:S=圓錐底面積:S底= 側(cè)面積:S側(cè)= 表面積:S=圓臺上底面面積:S上底= 下底面面積:S下底= 側(cè)面積:S側(cè)= 表面積:S=思考探究情境導(dǎo)學(xué)已知ABBiAi是圓柱的軸截面,AAi=a,AB=b,P是BBi的中點(diǎn);一小蟲沿圓柱的側(cè) 面從Ai爬到P,如何求小蟲爬過的最短路程?要解決這個問題需要將圓柱的側(cè)面展開,本節(jié)我們將 借助幾何體的側(cè)面展開圖來研究幾何體的表面積.探究點(diǎn)一 棱柱、棱錐、棱臺的表面積思考i在初中我們已經(jīng)學(xué)過正方體和長方體的表面積,以及它們的展開圖,你知道正方體和長
38、方 體的展開圖的面積與正方體和長方體的表面積的關(guān)系嗎?答:思考2幾何體的表面積等于它的展開圖的面積,那么,棱柱,棱錐,棱臺的側(cè)面展開圖是怎樣的?如何求棱柱,棱錐,棱臺的表面積?答:例i已知棱長為a,各面均為等邊三角形的四面體SABC,求它的表面積.反思與感悟在解決棱錐、 棱臺的側(cè)面積、 表面積問題時往往將已知條件歸結(jié)到一個直角三角形中 求解,為此在解此類問題時,要注意直角三角形的應(yīng)用32跟蹤訓(xùn)練1已知棱長為5,底面為正方形,各側(cè)面均為正三角形的四棱錐SABCD,求它的表面積答:例2已知正四棱臺(上6,高和下底面邊長都是答:、下底是正方形, 上底面的中心在下底面的投影是下底面中心)上底面邊長為1
39、2,求它的側(cè)面積反思與感悟解決有關(guān)正棱臺的問題時, 常用兩種解題思路: 一是把基本量轉(zhuǎn)化到直角梯形中去解 決;二是把正棱臺還原成正棱錐,利用正棱錐的有關(guān)知識來解決跟蹤訓(xùn)練2在本例中,把棱臺還原成棱錐,你能利用棱錐的有關(guān)知識求解嗎?答:33探究點(diǎn)二 圓柱、圓錐、圓臺的表面積的求法 思考1如何根據(jù)圓柱的展開圖,求圓柱的表面積? 答:思考2如何根據(jù)圓錐的展開圖,求圓錐的表面積? 答:思考3如何根據(jù)圓臺的展開圖,求圓臺的表面積? 答:思考4圓柱、圓錐、圓臺三者的表面積公式之間有什么關(guān)系? 答:例3一圓臺形花盆,盆口直徑20 cm,盆底直徑15 cm,底部滲水圓孔直徑1.5 cm, 為美化外表而涂油漆,
40、 若每平方米用100毫升油漆, 涂100個這樣的花盆需要多少油漆? 結(jié)果精確到1毫升)答:盆壁長15 cm.(n取3.14,34反思與感悟解決臺體的問題通常要還臺為錐,求面積時要注意側(cè)面展開圖的應(yīng)用,上、下底面圓的周長是展開圖的弧長.跟蹤訓(xùn)練3圓臺的上、下底面半徑分別為10 cm和20 cm.它的側(cè)面展開圖扇環(huán)的圓心角為180那么圓臺的表面積是多少?(結(jié)果中保留n)答:【隨堂練習(xí)】1一個幾何體的三視圖(單位長度:cm)如圖所示,則此幾何體的表面積是()A(80+16 2)cm2B84 cm2C(96+16 ,2)cm2D96 cm22某幾何體的三視圖如圖所示,其中俯視圖是個半圓,則該幾何體的表
41、面積為()35D.5n+ f33._一個高為2的圓柱,底面周長為2n該圓柱的表面積為_.4.表面積為3n的圓錐,它的側(cè)面展開圖是一個半圓,則該圓錐的底面直徑為5._一個幾何體的三視圖如圖所示, 則該幾何體的表面積為 _ .【課堂小結(jié)】1.多面體的表面積為圍成多面體的各個面的面積之和.棱柱的表面積等于它的側(cè)面積加底面積;棱 錐的表面積等于它的側(cè)面積加底面積;棱臺的表面積等于它的側(cè)面積加兩個底的面積.2.有關(guān)旋轉(zhuǎn)體的表面積的計(jì)算要充分利用其軸截面,就是說將已知條件盡量歸結(jié)到軸截面中求解.而對于圓臺有時需要將它還原成圓錐,再借助相似的相關(guān)知識求解.A.3nC.3n+ .3363.S圓柱表=2n(r+
42、I);S圓錐表=n(r+I);S圓臺表=n(2+rl+Rl+R2).第 2 課時 柱體、錐體、臺體、球的體積與球的表面積目標(biāo)1.掌握柱體、錐體、臺體的體積公式,會利用它們求有關(guān)幾何體的體積;2.了解球的表面積與體積公式,并能應(yīng)用它們求球的表面積及體積;3會求簡單組合體的體積及表面積.【知識梳理】1.柱體、錐體、臺體的體積幾何體體積柱體V柱體=(S為底面面積,h為咼),V圓柱=(r為底面半徑)錐體V錐體=S為底面面積,h為咼),V圓錐=(r為底面半徑)臺體V臺體=3(S/SS+S )h(S, S分別為上、下底面面積,h為高),1cCV圓臺=3由(2+rr+r2)(r ,r分別為上、下底面半徑)2
43、.球的體積球的半徑為R,那么它的體積V=_3.球的表面積S=球的半徑為R,那么它的表面積S=_思考探究情境導(dǎo)學(xué)上一節(jié)我們學(xué)習(xí)了幾何體的表面積,一般地,面積是相對平面圖形來說的,對于空間圖形需要研究它們的體積,本節(jié)我們就來研究柱體、錐體、臺體、球的體積和球的表面積問題.探究點(diǎn)一柱體、錐體、臺體的體積思考1我們已經(jīng)學(xué)習(xí)了正方體、 長方體、圓柱、圓錐的體積計(jì)算公式, 它們的體積公式如何表示?答:思考2根據(jù)正方體、長方體、圓柱的體積公式,推測柱體的體積計(jì)算公式?答:思考3等底、等高的圓柱與圓錐之間的體積關(guān)系如何?等底等高的圓錐、棱錐之間的體積關(guān)系如何?答:思考4根據(jù)圓錐的體積公式,推測錐體的體積計(jì)算公
44、式?答:37思考5臺體的上底面積S,下底面積S,高h(yuǎn),則臺體的體積是怎樣的?圓臺的體積公式如何用38上下底面半徑及高表示?例1如圖所示的三棱錐PABC的三條側(cè)棱兩兩垂直, 直線和一平面內(nèi)兩相交直線垂直,則直線與平面垂直)答:反思與感悟三棱錐的任一側(cè)面都可以做為底面來求其體積;在已知三棱錐的體積時,可用等體積法求點(diǎn)到平面的距離.在本例中有VPABC=VA-PBC=VB-FAC=VC-FAB.跟蹤訓(xùn)練1一空間幾何體的三視圖如圖所示,則該幾何體的體積為()A.2n+2 .3B.4n+2 .32/325C.2n+3D.4n+3探究點(diǎn)二球的體積和表面積思考 球既沒有底面,也無法像柱、錐、臺體一樣展成平面
45、圖形,怎樣求球的表面積和體積呢?就目前我們學(xué)過的知識還不能解決,我們不妨先記住公式. 設(shè)球的半徑為R,那么它的體積:V=3nR3,3它的表面積S=4KR2,現(xiàn)在請大家觀察這兩個公式,思考它們都有什么特點(diǎn)?例2如圖,圓柱的底面直徑與高都等于球的直徑.求證:且PB=1 , PA=3, PC=;6,求其體積.(392(i)球的體積等于圓柱體積的3; 球的表面積等于圓柱的側(cè)面積. 答:反思與感悟(1)球與正方體的六個面均相切,則球的直徑等于正方體的棱長.球與正方體的12條棱均相切,則球的直徑是正方體的面對角線.球與圓柱的底面和側(cè)面均相切,則球的直徑等于圓柱的高,也等于圓柱底面圓的直徑.(4)球與圓臺的
46、底面和側(cè)面均相切,則球的直徑等于圓臺的高.跟蹤訓(xùn)練2球與圓臺的上、下底面及側(cè)面都相切,且球面面積與圓臺的側(cè)面積之比為3:4,則球的體積與圓臺的體積之比為()A.6:13B.5:14C.3:4D.7:15探究點(diǎn)三 簡單組合體的表面積和體積例3如圖,梯形ABCD中,AD/BC, /ABC=90AD=a,BC=2a, /DCB=60 在平面ABCD內(nèi)過點(diǎn)C作I丄CB,以I為軸旋轉(zhuǎn)一周.求旋轉(zhuǎn)體的表面積和體積.40反思與感悟求組合體的表面積或體積, 首先應(yīng)弄清它的組成, 其表面有哪些底面和側(cè)面, 各個面 應(yīng)該怎樣求,然后再根據(jù)公式求出各面的面積,最后再相加或相減求體積時也要先弄清組成,求 出各簡單幾何
47、體的體積,然后再相加或相減.跟蹤訓(xùn)練3如圖所示,在多面體ABCDEF中,已知面ABCD是邊長為3的正方形,EF/AB,EF3=2,EF與面ABCD的距離為2,求該多面體的體積.答:【隨堂練習(xí)】1.已知高為3的棱柱ABCAiBiCi的底面是邊長為1的正三角形(如圖),則三棱錐BiABC的體 積為()41A.4C.F2.設(shè)正六棱錐的底面邊長為1,側(cè)棱長為5,那么它的體積為()A.6 ,3 B. 3 C.2 3 D.23.若一個圓錐的側(cè)面展開圖是面積為_2n的半圓面, 則該圓錐的體積為.4._如圖,在三棱柱AiBiCiABC中,D,E,F分別是AB,AC,AAi的中點(diǎn),設(shè)三棱錐FADE的 體積為Vi
48、,三棱柱AiBiCiABC的體積為V2,則Vi:V2=_.B.2D.【課堂小結(jié)】2.在三棱錐ABCD中,若求點(diǎn)A到平面BCD的距離h,可以先求VA-BCD,h=SBCD這種方法就是用等體積法求點(diǎn)到平面的距離,其中V般用換頂點(diǎn)法求解,即VA-BCD=VB-ACD=VC-ABD=VD-ABC,求解的原則是V易求,且BCD的面積易求.3求幾何體的體積,要注意分割與補(bǔ)形將不規(guī)則的幾何體通過分割或補(bǔ)形將其轉(zhuǎn)化為規(guī)則的幾何 體求解.4.利用球的半徑、球心到截面圓的距離、截面圓的半徑可構(gòu)成直角三角形,進(jìn)行相關(guān)計(jì)算.5.解決球與其他幾何體的切接問題,通常先作截面,將球與幾何體的各量體現(xiàn)在平面圖形中,再進(jìn) 行相
49、關(guān)計(jì)算.習(xí)題課空間幾何體結(jié)構(gòu)圖類型題題型一 三視圖與直觀圖三視圖是從三個不同的方向看同一個物體而得到的三個視圖,從三視圖可以看出,俯視圖反映物體 的長和寬,正視圖反映它的長和高,側(cè)視圖反映它的寬和高.例1已知某幾何體的三視圖如圖所示,則該幾何體的體積為()8n10nA. B.3nC. D.6n跟蹤訓(xùn)練1一幾何體的三視圖如圖所示.說出該幾何體的結(jié)構(gòu)特征并畫出直觀圖;(2)計(jì)算該幾何體的體積與表面積.3V39R cm*1.柱體、錐體、臺體的體積之間的內(nèi)在關(guān)系為仙視圖止觀圖40題型二 柱體、錐體、臺體的表面積和體積幾何體的表面積及體積的計(jì)算是現(xiàn)實(shí)生活中經(jīng)常能夠遇到的問題,在計(jì)算中應(yīng)注意各數(shù)量之間的關(guān)
50、 系及各元素之間的位置關(guān)系,特別是特殊的柱、錐、臺體,要注意其中矩形、梯形及直角三角形等 重要的平面圖形的應(yīng)用.例2圓柱有一個內(nèi)接長方體ACi,長方體對角線長是10,2cm,圓柱的側(cè)面展開平面圖為矩形,此 矩形的面積是100ncm2,求圓柱的體積.答:跟蹤訓(xùn)練2正四棱柱的對角線長為3 cm,它的表面積為16 cm2,求它的體積.答:題型三 幾何體中的有關(guān)最值問題有關(guān)旋轉(zhuǎn)體中某兩點(diǎn)表面上的長度最小問題,一般是利用展開圖中兩點(diǎn)的直線距離最小來求解;有 關(guān)面積和體積的最值問題,往往把面積或體積表示為某一變量的二次函數(shù)的形式,然后利用二次函 數(shù)的知識求最值.例3如圖,在底面半徑為1,高為2的圓柱上A點(diǎn)
51、處有一只螞蟻,它要圍繞圓柱由A點(diǎn)爬到B點(diǎn),問螞蟻爬行的最短距離是多少?答:跟蹤訓(xùn)練3有一根長為3ncm底面半徑為1 cm的圓柱形鐵管,用一段鐵絲在鐵管上纏繞2圈,并使鐵絲的兩個端點(diǎn)落在圓柱的同一母線的兩端,求鐵絲的最短長度.41【課堂小結(jié)】研究空間幾何體,需在平面上畫出幾何體的直觀圖或三視圖,由幾何體的直觀圖可畫它的三視圖, 由三視圖可得到其直觀圖,同時可以通過作截面把空間幾何問題轉(zhuǎn)化成平面幾何問題來解決.另外,圓柱、圓錐、圓臺的表面積公式,我們都是通過展開圖、化空間為平面的方法得到的,求球 的切接問題通常也是由截面把空間問題轉(zhuǎn)化為平面問題來解決第二章 點(diǎn)直線平面之間的位置關(guān)系2.1.1平面目
52、標(biāo)1掌握平面的表示法,點(diǎn)、直線與平面的關(guān)系;2掌握有關(guān)平面的三個公理;3會用符號表示圖形中點(diǎn)、直線、平面之間的關(guān)系.【知識梳理】1.平面的概念(1)幾何里的平面是從呈平面形的物體中抽象出來的.(2)幾何里的平面是 _ 的.2.平面的畫法(1)通常把水平的平面畫成一個 _ ,并且其銳角畫成45且橫邊長等于其鄰邊長的 _(2)如果一個平面被另一個平面遮擋住,為了增強(qiáng)立體感,被遮擋部分用_畫出來.3.點(diǎn)、直線、平面的位置關(guān)系的符號表示A是點(diǎn),I,m是直線,a, B是平面.文字語言付號語言圖形語言A在1上A在1夕卜倍.42A在a內(nèi)A在a外l在a內(nèi)l在a外l,m相交于Al,a相交于Aa, B相交于14平
53、面的基本性質(zhì)公理文字語言圖形語言付號語言43公理1如果一條直線上的在一個平面內(nèi),那么這條直線 在Al,B1,且A a,B a?公理2過不在一條直線上的二點(diǎn),有且只有一個平面A,B,C三點(diǎn)不共線?存在 惟一的平面a使A,B,Ca公理3如果兩個不重合的平面有一 個公共點(diǎn),那么它們有且只 有一條過該點(diǎn)的P a且P 0?,且思考探究情境導(dǎo)學(xué)在西游記中,如來佛祖對孫悟空說:“你一個跟頭雖有十萬八千里,但不會跑出我的手掌心”.結(jié)果孫悟空真沒有跑出如來佛祖的手掌心,如果把孫悟空看作是一個點(diǎn),他的運(yùn)動成 為一條線,大家說如來佛祖的手掌像什么?探究點(diǎn)一平面的概念思考1觀察長方體,你能發(fā)現(xiàn)長方體的頂點(diǎn), 棱所在的
54、直線,以及側(cè)面、底面之間的位置關(guān)系嗎? 答 思考2生活中常見的如黑板、平整的操場、桌面、平靜的湖面等等,都給我們以平面的印象,你 們能舉出更多例子嗎?那么,平面的含義是什么呢?答 思考3如何用字母表示平面,如何表示點(diǎn)在平面內(nèi)或點(diǎn)不在平面內(nèi)? 答例1下列四個選項(xiàng)中的圖形表示兩個相交平面,其中畫法正確的是()44跟蹤訓(xùn)練1下列命題:(1)書桌面是平面;(2)8個平面重疊起來要比6個平面重疊起來厚;(3)有一個平面的長是50 m,寬是20 m;(4)平面是絕對的平、 無厚度、 可以無限延展的抽象的數(shù)學(xué)概念其中正確命題的個數(shù)為()A1 B2 C3 D4探究點(diǎn)二 平面的基本性質(zhì)導(dǎo)引 如果直線I與平面a有一個公共點(diǎn)P,直線I是否在平面a內(nèi)?如果直線I與平面a有兩個公 共點(diǎn), 直線I是否在平面a內(nèi)?思考1實(shí)際生活中, 我們有這樣的經(jīng)驗(yàn): 把一根直尺邊緣上的任意兩點(diǎn)放到桌面上, 可以看到, 直 尺的整個邊緣就落在了桌面上從經(jīng)驗(yàn)中我們能得到什么結(jié)論呢?答思考2如何用符號語言表示公理1?公理1有怎樣的用途?答例2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度360借條合同多(信用保險(xiǎn)合作協(xié)議)3篇
- 2024物流配送服務(wù)合同服務(wù)范圍
- 2024年食堂就餐卡使用規(guī)定
- 2024年網(wǎng)絡(luò)安全防護(hù)系統(tǒng)采購合同
- 2025年度金融產(chǎn)品代理銷售合同2篇
- 2024年退房時房屋損害賠償合同
- 2024版HR干貨目標(biāo)責(zé)任書
- 2024年生產(chǎn)線融資租賃
- 2024野生動物保護(hù)項(xiàng)目融資與投資合作協(xié)議3篇
- 2024年財(cái)務(wù)數(shù)據(jù)錄入與保管協(xié)議3篇
- 勞務(wù)派遣勞務(wù)外包服務(wù)方案(技術(shù)方案)
- 2023年藥品注冊專員年度總結(jié)及來年計(jì)劃
- 圖紙標(biāo)注常見問題和要求國家標(biāo)準(zhǔn)新版
- 軟件無線電原理與應(yīng)用第3版 課件 第4-6章 軟件無線電硬件平臺設(shè)計(jì)、軟件無線電信號處理算法、信道編譯碼技術(shù)
- 兒童ERCP的應(yīng)用及技巧課件
- 《低壓電工技術(shù)》課程標(biāo)準(zhǔn)
- 22G101系列圖集常用點(diǎn)全解讀
- (國家基本公共衛(wèi)生服務(wù)項(xiàng)目第三版)7高血壓患者健康管理服務(wù)規(guī)范
- 12 富起來到強(qiáng)起來 精神文明新風(fēng)尚(說課稿)-部編版道德與法治五年級下冊
- 中級消防維保理論考試試題題庫及答案
- 讀書會熵減華為活力之源
評論
0/150
提交評論