




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、抽屜原理的教學設計范文(通用5篇)作為一名默默奉獻的教育工作者,時常需要用到教學設計,教學設計是連接基礎理論與實踐的橋梁,對于教學理論與實踐的緊密結(jié)合具有溝通作用。寫教學設計需要注意哪些格式呢?下面是小編精心整理的抽屜原理的教學設計范文(通用5篇),歡迎大家借鑒與參考,希望對大家有所幫助。抽屜原理的教學設計1【教學內(nèi)容】義務教育課程標準實驗教科書數(shù)學六年級下冊?!窘滩姆治觥孔寣W生初步了解簡單“抽屜原理”,教材借助把4枝鉛筆放進3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”,通過用“抽屜原理”解決簡單的實際問題,初步感受數(shù)學的魅力。主要培養(yǎng)學生的思考和推理能力,讓學生初步經(jīng)歷“數(shù)學原理”的過
2、程,提高學生數(shù)學應用意識?!緦W情分析】教材借助把4枝鉛筆放進3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”。學生在操作實物的過程中可以發(fā)現(xiàn)一個現(xiàn)象:不管怎么放,總有一個文具盒里至少放進2枝鉛筆,從而產(chǎn)生疑問,激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉?!窘虒W目標】1經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。2通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。3通過“抽屜原理”的靈活應用感受數(shù)學的魅力?!窘虒W重點】經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”?!窘虒W難點】理解“抽屜原理”,并對一些簡單實際問題加以“模型化”?!窘叹摺?/p>
3、學具準備】每組都有3個文具盒和4枝鉛筆。【教學過程】一、談話導入教師:同學們,你們在電腦上玩過“電腦算命”嗎?“電腦算命”看起來很深奧,只要報出你的出生的年、月、日和性別,一按鍵,屏幕上就會出現(xiàn)所謂性格、命運、財運等。通過今天的學習,我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非??尚突奶频模遣荒苄诺墓戆褢颉0鍟撼閷显斫處煟和ㄟ^學習,你想解決那些問題?根據(jù)學生回答,教師把學生提出的問題歸結(jié)為:“抽屜原理”是怎樣的?這里的“抽屜”是指什么?運用“抽屜原理”能解決那些問題?怎樣運用“抽屜原理”解決實際問題?二、通過操作,探究新知(一)認識“抽屜原理”出示題目:有3枝鉛筆,2個
4、盒子,把3枝鉛筆放進2個盒子里,怎么放?有幾種不同的放法?師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況(3,0)(2,1)師:5個人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。3支筆放進2個盒子里呢?生:不管怎么放,總有一個盒子里至少有2枝筆?師:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。師:那么,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況。(4,0,0)(3,1,0)(2,2,0)(2,1,1),師:還有
5、不同的放法嗎?生:沒有了。師:你能發(fā)現(xiàn)什么?生:不管怎么放,總有一個盒子里至少有2枝鉛筆。師:“總有”是什么意思?生:一定有師:“至少”有2枝什么意思?生:不少于兩只,可能是2枝,也可能是多于2枝?師:就是不能少于2枝。(通過操作讓學生充分體驗感受)師:把3枝筆放進2個盒子里,和把4枝筆飯放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現(xiàn)了這個結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結(jié)論呢?學生思考組內(nèi)交流匯報師:哪一組同學能把你們的想法匯報一下?組1生:我們發(fā)現(xiàn)如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,
6、總有一個盒子里至少有2枝鉛筆。師:你能結(jié)合操作給大家演示一遍嗎?(學生操作演示)師:同學們自己說說看,同位之間邊演示邊說一說好嗎?師:這種分法,實際就是先怎么分的?生眾:平均分師:為什么要先平均分?(組織學生討論)生1:要想發(fā)現(xiàn)存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?師:同意嗎?那么把5枝筆放進4個盒子里呢?(可以結(jié)合操作,說一說)師:哪位同學能把你的想法匯報一下,生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。師
7、:把6枝筆放進5個盒子里呢?還用擺嗎?生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。師:把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?你發(fā)現(xiàn)什么?生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。(二)探究新知1出示題目:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?(留給學生思考的空間,師巡視了解各種情況)2學
8、生匯報。生1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。板書:5本2個2本余1本(總有一個抽屜里至有3本書)7本2個3本余1本(總有一個抽屜里至有4本書)9本2個4本余1本(總有一個抽屜里至有5本書)師:2本、3本、4本是怎么得到的?生答完成除法算式。52=2本1本(商加1)72=3本1本(商加1)92=4本1本(商加1)師:觀察板書你能發(fā)現(xiàn)什么?生1:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。師:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?生:“總有一個抽屜里的至少有3本”只要用53
9、=1本2本,用“商+2”就可以了。生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。師:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對呢?在小組里進行研究、討論。交流、說理活動:生1:我們組通過討論并且實際分了分,結(jié)論是總有一個抽屜里至少有2本書,不是3本書。生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結(jié)論是“總有一個抽屜里至少有2本書”。生3我們組的結(jié)論是5本書平均分放到3個抽屜里,“總有一個抽屜里至少有2本書”用“商加1”就可以了,不是“
10、商加2”。師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。師:同學們同意吧?師:同學們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用。“抽屜原理”的應用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應用這一原理解決問題。3解決問題。71頁第3題。(獨立完成,交流反饋)小結(jié):經(jīng)過剛
11、才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。三、應用原理解決問題師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?生:2張/因為54=11師:先驗證一下你們的猜測:舉牌驗證。師:如有3張同花色的,符合你們的猜測嗎?師:如果9個人每一個人抽一張呢?生:至少有3張牌是同一花色,因為94=21四、全課小結(jié)上面我們所證明的數(shù)學原理就是最簡單的“抽屜原理”,可以概括為:把m個物體任意放到m1個抽屜里,那么總有一個抽屜中放進了
12、至少2個物體。五、思維訓練1aa從街上隨便找來13人,就可以斷定他們中至少有兩個人屬相(指鼠、牛、虎、兔十二種生肖)相同。說明理由。2aa任意367名學生中,一定存在兩名學生,他們在同一天過生日。說明理由?!窘虒W反思】1、小組活動很容易抓住學生的注意力,讓學生覺得這節(jié)課要探究的問題即好玩又有意義。2、理解“抽屜原理”對于學生來說有著一定的難度。3、部分學生很難判斷誰是物體,誰是抽屜。抽屜原理的教學設計2【知識技能】1理解最簡單的抽屜原理及抽屜原理的一般形式。2引導學生采用操作的方法進行枚舉及假設法探究。【過程方法】經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理?!厩楦袘B(tài)度價值觀】體會數(shù)學知識在日常生
13、活中的廣泛應用,培養(yǎng)學生的探究意識和能力?!窘虒W重、難點】經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”?!窘虒W過程】一、問題引入。師:同學們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準備了3把椅子,請4個同學上來,誰愿來?1游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。2討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這
14、節(jié)課我們就一起來研究這個原理。二、探究新知(一)教學例11出示題目:有4枝鉛筆,3個盒子,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師出示各種情況。板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),問題:4個人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。4支筆放進3個盒子里呢?引導學生得出:不管怎么放,總有一個盒子里至少有2枝筆。問題:(1)“總有”是什么意思?(一定有)(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)教師引導學生總結(jié)規(guī)律:我們把4枝筆
15、放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現(xiàn)了這個結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個結(jié)論呢?學生思考并進行組內(nèi)交流,教師選代表進行總結(jié):如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)抽屜原理的教學設計3
16、教學目標:1知識與能力目標:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數(shù)學活動,建立數(shù)學模型,發(fā)現(xiàn)規(guī)律。滲透“建?!彼枷?。2過程與方法目標:經(jīng)歷從具體到抽象的探究過程,提高學生有根據(jù)、有條理地進行思考和推理的能力。3情感、態(tài)度與價值觀目標:通過“抽屜原理”的靈活應用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學文化及數(shù)學的魅力。教學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。教學準備:教具:5個杯子,6根小棒;學具:每組5個杯子,6根小棒。教學過程
17、:一、游戲激趣,初步體驗。師:同學們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)€游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學上來各抽一張,我們來驗證一下。如果再請五位同學來抽,我還敢這樣肯定地說,你們相信嗎?其實這里面蘊藏著一個非常有趣的數(shù)學原理,想不想研究???二、操作探究,發(fā)現(xiàn)規(guī)律。(一)經(jīng)歷“抽屜原理”的探究過程,理解原理。1研究小棒數(shù)比杯子數(shù)多1的情況。師:今天這節(jié)課我們就用小棒和杯子來研究。板書:小棒杯子師:如果把3根小棒放在2個杯子里,該怎樣放?有
18、幾種放法?學生分組操作,并把操作的結(jié)果記錄下來。請一個小組匯報操作過程,教師在黑板上記錄。師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個杯子里至少有幾根小棒?板書:總有一個杯子里至少有。師:依此推想下去,4根小棒放在3個杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?學生分組操作,并把操作的結(jié)果記錄下來。請一個小組代表匯報操作過程,教師在黑板上記錄。師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的“總有”是什么意思?“至少”又是什么意思?師:那如果把6根小棒放在5個杯子里,猜一猜,會有什么樣的結(jié)果?師:怎樣驗證猜測的結(jié)果對不對,你又什么好方法?引導學生不再一一列舉,用平均分的方法來找答案。并用算式表示
19、分的結(jié)果:65=11師:那如果用這種方法,你知道把7根小棒放在6個杯子里,把10根小棒放在9個杯子里,把100根小棒放在99個杯子里,會有什么樣的結(jié)果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的數(shù)量多1,總有一個杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會有什么樣的結(jié)果呢?2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。師:如果把5根小棒放在3個杯子里,會有什么結(jié)果?引導:先平均分,每個杯子里分得1根小棒,余下的2根小棒又該怎么分呢?師:把7根小棒放在3個杯子里,會有什么結(jié)果呢?為什么?3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多等情況。師:如果把9根小棒放在4個杯子
20、里,把15根小棒放在4個杯子里,分別又會有什么結(jié)果?小組內(nèi)討論,再請同學說結(jié)果和理由。4、總結(jié)規(guī)律。師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?總結(jié):把m個物體放在n個抽屜里(mn),總有一個抽屜至少有“商+1”個物體。5、介紹抽屜原理?!俺閷显怼庇址Q“鴿巢原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實際問題中有著廣泛的應用?!俺閷显怼钡膽檬乔ё?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。三、應用“抽屜原理”,感受數(shù)學的魅力。1、把5本書放進2個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?為什么
21、?先思考:這里是把什么看做物體?什么看做抽屜?再說結(jié)果和理由。2、8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?3、向東小學六年級共有370名學生,其中六(2)班有49名學生。請問下面兩人說的對嗎?為什么?(1)六年級里至少有兩人的生日是同一天。(2)六(2)班中至少有5人是同一個月出生的。4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?5、師:開課時我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會有2張牌是同一花色的?你能用所學的抽屜原理來解釋嗎?四、全課小結(jié)。說一說:今天這節(jié)課,我們又學習了什么新知識?(
22、師生共同對本節(jié)課的內(nèi)容進行小結(jié))五、布置作業(yè)。課本73頁練習十二第2、4題。六、板書設計。數(shù)學廣角抽屜原理物體數(shù)抽屜數(shù)=商余數(shù)至少數(shù)=商1小棒杯子總有一個杯子里至少有32243265=11253=12274=13294=213154=334教學反思:1、通過游戲,激發(fā)興趣。興趣是最好的老師。課前我設計了從52張撲克牌(去掉2張王牌)中任意抽取5張,老師肯定地說:至少有2張牌是同一花色的,在學生半信半疑時,師生共同游戲,讓學生信服,但又不知道其中奧妙,這樣導入,學生興趣盎然。2、操作探究,建立模型。本節(jié)課充分放手,讓學生自主思考,采用自己的方法“證明”:“把4根小棒放入3個杯子里,不管怎么放,總
23、有一個杯子里至少有2根小棒”,然后交流展示,為后面開展教與學的活動做了鋪墊。此處設計注意了從最簡單的數(shù)據(jù)開始擺放,有利于學生觀察、理解,有利于調(diào)動所有的學生積極性。在有趣的類推活動中,引導學生得出一般性的結(jié)論,讓學生體驗和理解“抽屜原理”的最基本原理,當物體個數(shù)大于抽屜個數(shù)時,一定有一個抽屜中放進了至少2個物體。這樣的教學過程,從方法層面和知識層面上對學生進行了提升,有助于發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。在評價學生各種“證明”方法,針對學生的不同方法教師給予針對性的鼓勵和指導,讓學生在自主探索中體驗成功,獲得發(fā)展。在學生自主探索的基礎上,進一步比較優(yōu)化,讓學生逐步學會運用一般性的數(shù)
24、學方法來思考問題。在這一環(huán)節(jié)的教學中抓住了假設法最核心的思路就是用“有余數(shù)除法”形式表示出來,使學生借助直觀,很好的理解了如果把物體盡量多地“平均分”給各個抽屜里,看每個抽屜里能分到多少,余下的不管放到哪個抽屜里,總有一個抽屜里比平均分得的數(shù)量多1。特別是對“某個抽屜至少有的數(shù)量”是除法算式中的商加“1”,而不是商加“余數(shù)”,教師適時挑出針對性問題進行交流、討論,使學生從本質(zhì)上理解了“抽屜原理”。3、解釋應用,深化知識。學了“抽屜原理”有什么用?能解決生活中的什么問題,這就要求在教學中要注重聯(lián)系學生的.生活實際。在應用“抽屜原理”,感受數(shù)學的魅力環(huán)節(jié)里,我設計了一組簡單、真實的生活情境,讓學生
25、用學過的知識來解釋這些現(xiàn)象,有效的將學生的自主探究學習延伸到課外,體現(xiàn)了“數(shù)學來源于生活,又還原于生活”的理念。教學永遠是一門遺憾的藝術。反思本節(jié)課的教學,有以下幾點不足:1、在把3根小棒放進2個杯子,把4根小棒放進3個杯子里,都讓學生進行了操作并做了記錄,但對學生的有序思考重視不夠,導致課堂檢測時,學生用列舉法解決問題的時候,有兩個同學把所有的可能都列舉對了,但不是有序排列的。還有兩個差一點的學生由于思維無序,因此沒能正確列舉出來。2、在把5根小棒放在3個杯子里,有學生出現(xiàn)了總有一個杯子里至少有3根小棒的結(jié)論,可能是用53=12,1+2=3,也就是很多同學容易出的錯誤:用商+余數(shù)。這時老師沒
26、有抓住這個同學思維中的錯誤制造思維矛盾,因此感覺學生對總有一個抽屜至少有的數(shù)量=商+1這一知識點的理解還不夠透徹。3學生在用“抽屜原理”解決實際問題時,書寫格式教師指導不到位。有些題目是要先說結(jié)論,再說理由。那么說理由的時候,有的同學只列了算式,如:53=12,1+1=2,還有的同學先列算式,再回答問題。在區(qū)教研室周俊主任的指導下,我才明白這類題目的書寫格式是:因為53=1(根)2(根),1+1=2(根),所以每個杯子里至少有2根小棒。總的說來,本節(jié)課學生的學習效果還不錯,全班學生針對這類問題都能快速做出正確分析與判斷。我也算圓滿完成了這節(jié)課的學習目標,實現(xiàn)了三維目標的有機整合。抽屜原理的教學
27、設計4桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發(fā)現(xiàn)至少會有一個抽屜里面至少放兩個蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。教學理念:激趣是新課導入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W生感興趣又易于理解的內(nèi)容。特別是對教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建?!?,使復雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。教學目標:1經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
28、2通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。3通過“抽屜原理”的靈活應用感受數(shù)學的魅力。教學重難點:重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。教學過程:一、課前游戲引入。師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。師:開始。師:都坐下了嗎?生:坐下了。師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個同學
29、”我說得對嗎?生:對!師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。(抽屜原理)二、通過操作,探究新知(一)探究例11、研究3枝鉛筆放進2個文具盒。(1)要把3枝鉛筆放進2個文具盒,有幾種放法?請同學們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。(2)反饋:兩種放法:(3,0)和(2,1)。(3)從兩種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)(4)“總有”什么意思?(一定有)(5)“至少”有2枝什么意思?(不少于2枝)小結(jié):在研究3枝鉛筆放進2個文具盒時,同學們表現(xiàn)得很積
30、極,發(fā)現(xiàn)了“不管怎么放,總有一個文具盒放進2枝鉛筆)2、研究4枝鉛筆放進3個文具盒。(1)要把4枝鉛筆放進3個文具盒里,有幾種放法?請同學們動手擺一擺,再把你的想法在小組內(nèi)交流。(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)從四種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個筆盒至少有2枝鉛筆)(4)你是怎么發(fā)現(xiàn)的?(5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個文具盒放進2枝鉛筆”。如果要讓每個文具盒里放的筆盡可能的少,你覺得應該要怎樣放?(每個文具盒都先放進一枝,還剩一枝不管放進哪個文具盒,總會有一個文具盒至少有2枝筆)(你真是一個善于思想的孩子。
31、)(6)這位同學運用了假設法來說明問題,你是假設先在每個文具盒里放1枝鉛筆,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)(7)誰能用算式來表示這位同學的想法?(54=11)商1表示什么?余數(shù)1表示什么?怎么辦?(8)在探究4枝鉛筆放進3個文具盒的問題,同學們的方法有兩種,一是枚舉了所有放法,找規(guī)律,二是采用了“假設法”來說明理由,你覺得哪種方法更明了更簡單?3、類推:把5枝鉛筆放進4個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?把6枝鉛筆放進5個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?把7枝鉛筆放進6個文具盒,是
32、不是總有一個筆盒至少有2枝鉛筆?為什么?把100枝鉛筆放進99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個文具盒里至少放進2枝鉛筆。)5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個筆盒至少有2枝鉛筆?!?、小結(jié):剛才我們分析了把鉛筆放進文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時,總有一個文具盒至少放進2枝鉛筆。這就是今天我們要學習的抽屜原理。既然叫“抽屜原理”是不是應該和抽屜有聯(lián)系吧?鉛筆相當于我們要準備放進抽屜的物體,那么文具盒就相當于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出
33、結(jié)論“總有一個抽屜里放進了2個物體?!?、在我們的生活中,常常會遇到抽屜原理,你能不能舉個例子?在課前我們玩的游戲中,有沒有抽屜原理?過渡:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。(二)探究例21、研究把5本書放進2個抽屜。(1)把5本書放進2個抽屜會有幾種情況?(5,0)、(4,1)和(3,2)(2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(總有一個抽屜至少放進了3本書)(3)還可以怎樣理解這個結(jié)論?先在每個抽屜里放進2本,剩下的1本放進任何一個抽屜,這個抽屜就有3本書了。(4)可以把我們的想法用算式表示出來:52=21(商2表示什么,余數(shù)1表示什么)2+1=3表示什么?2、類推:如果把7本書放進2個抽屜中,至少有一個抽屜放進4本書。如果把9本書放進2個抽屜中。至少有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三年級數(shù)學故事解讀
- 小王子書中純真之愛讀后感
- 自然資源開發(fā)與保護合作協(xié)議
- 智能家電銷售與保修協(xié)議
- 初中生歷史故事解讀
- 運輸合同運輸補充協(xié)議
- 辦公區(qū)域布局調(diào)研報告
- 環(huán)保咨詢服務協(xié)議
- 電子設備銷售及安裝維護合同
- 物流行業(yè)運輸損壞物品賠償協(xié)議
- 2025年哈爾濱幼兒師范高等??茖W校單招職業(yè)技能測試題庫學生專用
- 企業(yè)內(nèi)部系統(tǒng)使用權限規(guī)范
- 2024年亳州職業(yè)技術學院單招職業(yè)技能測試題庫
- 2025年旅行與旅游的未來:擁抱可持續(xù)與包容性增長報告(英文版)-世界經(jīng)濟論壇
- 2025年湖南水利水電職業(yè)技術學院高職單招職業(yè)適應性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年徐州生物工程職業(yè)技術學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 《裝修流程圖課件》課件
- T-CBIA 010-2024 營養(yǎng)素飲料標準
- (完整word版)消化系統(tǒng)知識點整理
- 全國防返貧監(jiān)測信息系統(tǒng)業(yè)務管理子系統(tǒng)操作手冊
- 出差行程計劃表(模版)
評論
0/150
提交評論