版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、Chapter 4 sampling ofcontinous-time signals4.1 periodic sampling4.2 discrete-time processing of continuous-time signals4.3 continuous-time processing of discrete-time signal4.4 digital processing of analog signals4.5 changing the sampling rate using discrete-time processing4.1 periodic sampling1.ide
2、al sample4W=T(Q rui=T(uL)T:sampleperiodfs=l/T:samplerateQs=27t/T:samplerate-4 -3-2-101234_4 _3 2 1 0 I 234Figure 4.1 ideal continous-time-to-discrete-time(C/D)converterFigure 4.2(a) mathematic node for ideal C/Dxn - xc(nT)Figure 4.3s2TT禮訂nZ)f-20,-a4ft.m,d nA A A皿-a -nv/ A. X Xn.20sg n忌 3 an4/vvx/v/
3、11 X A aliasing frequency艮晉也nJ 2”J LCO = Q1aliasingX(e)=Xs(jC)lde/yI s=-Nxc(J(3 k2巧IT)k=-sfrequency spectrumchange of ideal sampleXXc(J(G_RGs)k=sNo aliasingPeriod =27iin time domain:w=2.17tand w=0.17tare the sametrigonometric function property82(y冋)=coz(03)high frequency is changed into low frequenc
4、y in time domain:w=l 1兀and w=0.9zare the same2.ideal reconstructionFigure 4.10(b) ideal D/C converterideal reconstruction in frequency domainFigure 4.4ilyvVV (C.Y C,V) )EXAMPLEFigure 4.5A”1-OoTHoan7T仏!- a -n0Tn0QvT xg)2 nn77Q,0o7=TAL !fflt-uT心QTake sinusoidal signal for example tounderstand aliasing
5、 from frequency domain、7No aliasing扎(川)Li1r*山nAliasingx,(川)rL11-(Qs-do)QEXAMPLExa(r) = cos(2*5f),0t l.f = 5HzSampling frequency:8HzReconstruct frequency:廣=8 5 = 3HZIdeal reconstruction svsteni-1Figure 4.10(a) mathematic model for ideal D/Cxg) =x $ g)H3)十 g)TIQ lXg) =X$g)H(j hr(t)=IFTHr(j) = 4-r Hg)e
6、G dG斗W dG2n J-2n丿譏sin( Qj) sin(r/T)ntlT ntIT:.xr(t) = xs(t)*hr(t) = xnS(t-nT)*-xj八7 /ff一 iIm、1彳LXt JFigure 4.90 t(C)3.Nyquist samplingtheoremsNyquist sampling theorems:let xc(t) be a bandlim ited signal withXC(JQ) = OJQIQATthen xc(t) is uniquely det er min ed by its samples xn = xc(nT)9n = 0,l,2,if
7、Qv- Qy OlN,that is0S =耳)N2GN、or (A = y)2/NG、/2: nyquist frequency2G“ : nyquist rateQs2QN:oversamplingG、 2Qv: undersampling-Oc.ncnQr= Q/2TFigure 4.41 Digital processing of analog signalsexamples of sampling theorem (1 )The highest frequency of analog signal ,which wav file with sampling rate 16kHz ca
8、n show ,is:8kHzThe higher sampling rate of audio files, the better fidel讓y.數(shù)字電話中的音頻館號W-OAV-zCD中的音頻信號?$-COexamples of sampling theorem(2)according to what you know about the sampling rate of MP3 file, judgethe sound we can fee)frequency range( B )Matlab codes to realizeinterpolationxa(r) =COS(IOM)J)t
9、 .f = 5Hz f =io/z(r = o.i5)$draw xn = xa(nT) = cos(K)r)= cos(加7)drawreconstruction signal:co,y(0 =工xnn二sswn(t-nT)ITn(t-nT)/T(A) 2044kHz(B) 2020kHzEXAMPT=O.I; n=0:10;dt=0.001; y=x*sinc(卜n*T)/T): x=cos( 1O*pi*n*T);t=ones( 11,1)* O:dt:ll;hold on;stem(n,x);n=n*ones( 1/dt+1);plot(t/T,y;r,)Supplement: ban
10、d-pass sampling theorem:=2(幾-九)(1 + M/N) N = int .5、/H-九丿M=f-.J- .-N/H- /L)/H=5B心2幾fs= 2fH/N = 2BW= 2B丫)= 2(1 + M /N)4.1 summary1 .representation in time domain of sampling=T()血)2.changes in frequency domain caused by samplingXV(JQ) = - 22xc(J(Q-Z;Qv)X(eJa)=- 2XcU(eo-k2rr)/T)g-S)廣 d3understand rec o
11、n struction in freque ncy domain(c)z.on)廠v q.v4. understand reconstruction in time domain/f t一、ir-t丁(e)5. sampling theoremRequirements and difficulties:frequency spectrum chart of sampling and reconstructioncomprehension and application of sampling theoremh)Figure 4.124.2 discrete-time processing of
12、 continuous-time signalsQ7r/Tconditions: LTI; no aliasing or aliasing occurred outside the pass band of filtersEXAMPLEFigure 4.11EXAMPLEaliasing occurred outside thepass band of digital filterssatisfies the equivalentrelation of frequencyresponse mentioned before. )Figure 4.13叫(UIW _匕十/_ ! /亦廠 f寧 4.3 continuous-time processing of discrete-time signalhn(P/E)Figure 4.16FZ:2FUAZT)2rr-嶂 -芋-爭導(dǎo)蘆gv(K)Figure 4.12EXAMPLEIdeal delay system: noninteger delayH(eJa) = Hc(jco/T)far coorecord the digital soundZlcro-ordcrTkiciil inturxlaling filter7TTholdFigure 4.5Influence caused by sampling ratea
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 2475:2025 EN Chloroprene rubber (CR) - General-purpose types - Evaluation procedure
- 2025裝飾裝修工程分包合同
- 2025技術(shù)傳授合同樣式
- 二零二五年度高端裝備價格保密合同3篇
- 2025年度綠色建筑示范項目建房協(xié)議書3篇
- 二零二五年度企業(yè)內(nèi)部停車場車輛使用免責(zé)協(xié)議3篇
- 二零二五年度智能家居系統(tǒng)發(fā)起人投資合同3篇
- 二零二五年度歷史文化街區(qū)物業(yè)用房移交及文化保護協(xié)議3篇
- 二零二五年度社區(qū)食堂兼職煮飯人員協(xié)議3篇
- 二零二五年度內(nèi)部員工保密協(xié)議模板:企業(yè)核心競爭力保護3篇
- 2025年上半年河南省西峽縣部分事業(yè)單位招考易考易錯模擬試題(共500題)試卷后附參考答案-1
- 深交所創(chuàng)業(yè)板注冊制發(fā)行上市審核動態(tài)(2020-2022)
- 手術(shù)室護理組長競聘
- 電力系統(tǒng)繼電保護試題以及答案(二)
- 小學(xué)生防打架斗毆安全教育
- 2024-2025學(xué)年九年級英語上學(xué)期期末真題復(fù)習(xí) 專題09 單詞拼寫(安徽專用)
- 網(wǎng)絡(luò)運營代銷合同范例
- 2024年新人教版七年級上冊歷史 第14課 絲綢之路的開通與經(jīng)營西域
- 植保無人機安全飛行
- 醫(yī)療糾紛事件匯報
- 2024年村干部個人工作總結(jié)例文(3篇)
評論
0/150
提交評論