




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、備戰(zhàn)2014數(shù)學分類突破贏高考14一、選擇題1a為正實數(shù),i為虛數(shù)單位,2,則a()A2 B.C.D1解析:選B由已知2,得|(ai)·(i)|1ai|2,2,a>0,a.2已知tan(),tan,那么tan()A. B.C. D.解析:選Btantan.3已知雙曲線1(a>0,b>0)的一條漸近線方程是yx,則該雙曲線的離心率為()A. B.C. D.解析:選C依題意,所以ba,ca.故e.4如圖所示的程序框圖輸出的所有點都在函數(shù)()Ayx1的圖像上 By2x的圖像上Cy2x的圖像上 Dy2x1的圖像上解析:選D依題意,運行程序框圖,輸出的點依次為(1,1),(2
2、,2),(3,4),(4,8),易知這四個點均在y2x1的圖像上5把函數(shù)ysin的圖像向左平移個單位后,所得函數(shù)的單調(diào)遞增區(qū)間為()A.(kZ)B.(kZ)C.(kZ)D.(kZ)解析:選B依題意,把函數(shù)ysin的圖像向左平移個單位后,所得函數(shù)為ysin,由2k2x2k,得kxk(kZ),所以所得函數(shù)的單調(diào)遞增區(qū)間為(kZ)6已知實數(shù)a、b滿足等式2a3b,下列五個關(guān)系式:0<b<a;a<b<0;0<a<b;b<a<0;ab. 其中可能成立的關(guān)系式有()A BC D解析:選B設(shè)2a3bk,則alog2k,blog3k,分別畫出ylog2x,ylo
3、g3x的圖像,如圖所示,由圖可知,正確答案為B.7二項式6的展開式的常數(shù)項是()A160 B160C240 D240解析:選B二項式的通項是Tr1C(2)6r·r,可知當r3時是其常數(shù)項,故T4C×23×(1)3160.8在ABC所在的平面內(nèi)有一點P,如果2,那么PBC的面積與ABC的面積之比是()A. B.C. D.解析:選A2,即2,即3,即點P在邊AC上且|PC|AC|,即PBC與ABC在同一底邊上的高的比值是,故面積之比為.二、填空題9已知等比數(shù)列an的公比q,Sn為其前n項和,則_.解析:由題意知,S4a1,a4a13a1,故5.答案:510若一個正四面
4、體的表面積為S1,其內(nèi)切球的表面積為S2,則_.解析:設(shè)正四面體棱長為a,則正四面體表面積為S14··a2a2,其內(nèi)切球的半徑為正四面體高的,即r·aa,因此內(nèi)切球表面積為S24r2,故.答案:11已知圓C的圓心與點P(2,1)關(guān)于直線yx1對稱直線3x4y110與圓C相交于A,B兩點,且|AB|6,則圓C的方程為_解析:設(shè)圓心C的坐標為(x0,y0),則由已知可得解得令圓C的半徑為r,圓心C(0,1)到3x4y110的距離d3,r2323218,圓C的方程為x2(y1)218.答案:x2(y1)218三、解答題12第十二屆全運會于2013年8月31日在遼寧沈陽舉
5、行,組委會在沈陽某大學招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位:cm),身高在175 cm以上(包括175 cm)定義為“高個子”,身高在175 cm以下(不包括175 cm)定義為“非高個子”,且只有“女高個子”才擔任“禮儀小姐”.(1)如果用分層抽樣的方法從“高個子”和“非高個子”中共抽取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?(2)若從所有“高個子”中選3名志愿者,用表示所選志愿者中能擔任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學期望解:(1)根據(jù)莖葉圖可知,有“高個子”12人,“非高個子”18人,用分層抽樣的方
6、法,每個人被抽中的概率是,所以選中的“高個子”有12×2人,“非高個子”有18×3人用事件A表示“至少有一名高個子被選中”,則它的對立事件表示“沒有一名高個子被選中”,則P(A)11.因此,至少有一人是“高個子”的概率是.(2)依題意,的取值為0,1,2,3.P(0),P(1),P(2),P(3).因此,的分布列如下0123P所以E()0×1×2×3×1.13.(2013·浙江高考)如圖,在四面體ABCD中,AD平面BCD,BCCD,AD2,BD2.M是AD的中點,P是BM的中點,點Q在線段AC上,且AQ3QC.
7、(1)證明:PQ平面BCD;(2)若二面角CBMD的大小為60°,求BDC的大小解:法一:(1)證明:如圖(1)取BD的中點O,在線段CD上取點F,使得DF3FC,連接OP,OF,F(xiàn)Q. 圖(1)因為AQ3QC,所以QFAD,且QFAD.因為O,P分別為BD,BM的中點,所以O(shè)P是BDM的中位線,所以O(shè)PDM,且OPDM.又點M為AD的中點,所以O(shè)PAD,且OPAD.從而OPFQ,且OPFQ,所以四邊形OPQF為平行四邊形,故PQOF.又PQ平面BCD,OF平面BCD,所以PQ平面BCD.(2)如圖(1),作CGBD于點G,作GHBM于點H,連接CH.因為AD
8、平面BCD,CG平面BCD,所以ADCG.又CGBD,ADBDD,故CG平面ABD,又BM平面ABD,所以CGBM.又GHBM,CGGHG,故BM平面CGH,所以GHBM,CHBM,所以CHG為二面角CBMD的平面角,即CHG60°.設(shè)BDC,在RtBCD中,CDBDcos 2cos ,CGCDsin 2cos sin ,BGBCsin 2sin2.在RtBDM中,HG.在RtCHG中,tanCHG.所以tan .從而60°,即BDC60°.圖(2)法二:(1)證明:如圖(2),取BD的中點O,以O(shè)為原點,OD,OP所在射線為y,z軸的正半
9、軸,建立空間直角坐標系Oxyz.由題意知A(0,2),B(0,0),D(0,0)設(shè)點C的坐標為(x0,y0,0)因為3,所以Q.因為M為AD的中點,故M(0,1)又P為BM的中點,故P.所以.又平面BCD的一個法向量為u(0,0,1),故·u0.又PQ平面BCD,所以PQ平面BCD.(2)設(shè)m(x,y,z)為平面BMC的一個法向量由(x0,y0,1),(0,2,1),知取y1,得m.又平面BDM的一個法向量為n(1,0,0),于是|cosm,n|,即23.又BCCD,所以·0,故(x0,y0,0)·(x0,y0,0)0,即xy2.聯(lián)立,解得(舍去)或所
10、以tanBDC.又BDC是銳角,所以BDC60°.14已知函數(shù)f(x)ln x,其中a為常數(shù)且a>0.(1)若曲線yf(x)在點(1,f(1)處的切線與直線yx1垂直,求a的值;(2)若函數(shù)f(x)在區(qū)間1,2上的最小值為,求a的值解:f(x)(x>0)(1)曲線yf(x)在點(1,f(1)處的切線與直線yx1垂直,f(1)2,即1a2,解得a3.(2)當0<a1時,f(x)>0在1,2上恒成立,這時f(x)在1,2上為增函數(shù),f(x)minf(1)a1,a1,a,與0<a1矛盾,舍去;當1<a<2時,可知當x(1,a)時,f(x)<0,f(x)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 代賣公司合同范本
- 產(chǎn)品抵押工資合同范本
- 內(nèi)部購買服務(wù)合同范本
- 999玫瑰買賣合同范本
- 云南土地流轉(zhuǎn)合同范本
- 04購房合同范例
- 無錫錦鯉池過濾器施工方案
- 主體蓋房合同范本
- app監(jiān)控合同范本
- 公司安全協(xié)議合同范本
- 中建“大商務(wù)”管理實施方案
- 2025年高考語文復習知識清單第十章作文專題11:漫畫作文寫作指導(學生版+解析)
- 中國肥胖及代謝疾病外科治療指南(2024版)
- 電力系統(tǒng)全環(huán)節(jié)實時精準碳計量方法及其應(yīng)用展望
- 131鄰補角對頂角(分層練習)-2022-2023學年七年級數(shù)學下冊
- 高三英語語法填空專項訓練100(附答案)及解析
- 2024年湖南省長沙市中考數(shù)學試題(含解析)
- 航空航天標準與認證互認
- 心理課教案自我認知與情緒管理
- 民用無人機操控員執(zhí)照(CAAC)考試復習重點題庫500題(含答案)
- 幼兒園 中班心理健康《我會傾訴》
評論
0/150
提交評論