高中數(shù)學(xué)導(dǎo)數(shù)教案一_第1頁(yè)
高中數(shù)學(xué)導(dǎo)數(shù)教案一_第2頁(yè)
高中數(shù)學(xué)導(dǎo)數(shù)教案一_第3頁(yè)
高中數(shù)學(xué)導(dǎo)數(shù)教案一_第4頁(yè)
高中數(shù)學(xué)導(dǎo)數(shù)教案一_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、導(dǎo)數(shù)的背景教學(xué)目標(biāo)理解函數(shù)的增量與自變量的增量的比的極限的具體意義教學(xué)重點(diǎn)瞬時(shí)速度、切線的斜率、邊際成本教學(xué)難點(diǎn)極限思想教學(xué)過(guò)程一、導(dǎo)入新課1.瞬時(shí)速度問(wèn)題1:一個(gè)小球自由下落,它在下落3秒時(shí)的速度是多少?析:大家知道,自由落體的運(yùn)動(dòng)公式是(其中g(shù)是重力加速度).當(dāng)時(shí)間增量很小時(shí),從3秒到(3)秒這段時(shí)間內(nèi),小球下落的快慢變化不大.因此,可以用這段時(shí)間內(nèi)的平均速度近似地反映小球在下落3秒時(shí)的速度.從3秒到(3)秒這段時(shí)間內(nèi)位移的增量:從而,.從上式可以看出,越小,越接近29.4米/秒;當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于29.4米/秒.此時(shí)我們說(shuō),當(dāng)趨向于0時(shí),的極限是29.4.當(dāng)趨向于0時(shí),平均速度

2、的極限就是小球下降3秒時(shí)的速度,也叫做瞬時(shí)速度.一般地,設(shè)物體的運(yùn)動(dòng)規(guī)律是ss(t),則物體在t到(t)這段時(shí)間內(nèi)的平均速度為.如果無(wú)限趨近于0時(shí),無(wú)限趨近于某個(gè)常數(shù)a,就說(shuō)當(dāng)趨向于0時(shí),的極限為a,這時(shí)a就是物體在時(shí)刻t的瞬時(shí)速度.2.切線的斜率問(wèn)題2:P(1,1)是曲線上的一點(diǎn),Q是曲線上點(diǎn)P附近的一個(gè)點(diǎn),當(dāng)點(diǎn)Q沿曲線逐漸向點(diǎn)P趨近時(shí)割線PQ的斜率的變化情況.析:設(shè)點(diǎn)Q的橫坐標(biāo)為1,則點(diǎn)Q的縱坐標(biāo)為(1)2,點(diǎn)Q對(duì)于點(diǎn)P的縱坐標(biāo)的增量(即函數(shù)的增量),所以,割線PQ的斜率.由此可知,當(dāng)點(diǎn)Q沿曲線逐漸向點(diǎn)P接近時(shí),變得越來(lái)越小,越來(lái)越接近2;當(dāng)點(diǎn)Q無(wú)限接近于點(diǎn)P時(shí),即無(wú)限趨近于0時(shí),無(wú)限趨近

3、于2.這表明,割線PQ無(wú)限趨近于過(guò)點(diǎn)P且斜率為2的直線.我們把這條直線叫做曲線在點(diǎn)P處的切線.由點(diǎn)斜式,這條切線的方程為:.一般地,已知函數(shù)的圖象是曲線C,P(),Q()是曲線C上的兩點(diǎn),當(dāng)點(diǎn)Q沿曲線逐漸向點(diǎn)P接近時(shí),割線PQ繞著點(diǎn)P轉(zhuǎn)動(dòng).當(dāng)點(diǎn)Q沿著曲線無(wú)限接近點(diǎn)P,即趨向于0時(shí),如果割線PQ無(wú)限趨近于一個(gè)極限位置PT,那么直線PT叫做曲線在點(diǎn)P處的切線.此時(shí),割線PQ的斜率無(wú)限趨近于切線PT的斜率k,也就是說(shuō),當(dāng)趨向于0時(shí),割線PQ的斜率的極限為k.3.邊際成本問(wèn)題3:設(shè)成本為C,產(chǎn)量為q,成本與產(chǎn)量的函數(shù)關(guān)系式為,我們來(lái)研究當(dāng)q50時(shí),產(chǎn)量變化對(duì)成本的影響.在本問(wèn)題中,成本的增量為:.產(chǎn)量

4、變化對(duì)成本的影響可用:來(lái)刻劃,越小,越接近300;當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于300,我們就說(shuō)當(dāng)趨向于0時(shí),的極限是300.我們把的極限300叫做當(dāng)q50時(shí)的邊際成本.一般地,設(shè)C是成本,q是產(chǎn)量,成本與產(chǎn)量的函數(shù)關(guān)系式為CC(q),當(dāng)產(chǎn)量為時(shí),產(chǎn)量變化對(duì)成本的影響可用增量比刻劃.如果無(wú)限趨近于0時(shí),無(wú)限趨近于常數(shù)A,經(jīng)濟(jì)學(xué)上稱(chēng)A為邊際成本.它表明當(dāng)產(chǎn)量為時(shí),增加單位產(chǎn)量需付出成本A(這是實(shí)際付出成本的一個(gè)近似值).二、小結(jié)瞬時(shí)速度是平均速度當(dāng)趨近于0時(shí)的極限;切線是割線的極限位置,切線的斜率是割線斜率當(dāng)趨近于0時(shí)的極限;邊際成本是平均成本當(dāng)趨近于0時(shí)的極限.三、練習(xí)與作業(yè):1.某物體的運(yùn)動(dòng)方

5、程為(位移單位:m,時(shí)間單位:s)求它在t2s時(shí)的速度.2.判斷曲線在點(diǎn)P(1,2)處是否有切線,如果有,求出切線的方程.3.已知成本C與產(chǎn)量q的函數(shù)關(guān)系式為,求當(dāng)產(chǎn)量q80時(shí)的邊際成本.4.一球沿某一斜面自由滾下,測(cè)得滾下的垂直距離h(單位:m)與時(shí)間t(單位:s)之間的函數(shù)關(guān)系為,求t4s時(shí)此球在垂直方向的瞬時(shí)速度.5.判斷曲線在(1,)處是否有切線,如果有,求出切線的方程.6.已知成本C與產(chǎn)量q的函數(shù)關(guān)系為,求當(dāng)產(chǎn)量q30時(shí)的邊際成本.導(dǎo)數(shù)的概念教學(xué)目標(biāo)與要求:理解導(dǎo)數(shù)的概念并會(huì)運(yùn)用概念求導(dǎo)數(shù)。教學(xué)重點(diǎn):導(dǎo)數(shù)的概念以及求導(dǎo)數(shù)教學(xué)難點(diǎn):導(dǎo)數(shù)的概念教學(xué)過(guò)程:一、導(dǎo)入新課:上節(jié)我們討論了瞬時(shí)速

6、度、切線的斜率和邊際成本。雖然它們的實(shí)際意義不同,但從函數(shù)角度來(lái)看,卻是相同的,都是研究函數(shù)的增量與自變量的增量的比的極限。由此我們引出下面導(dǎo)數(shù)的概念。二、新授課:1.設(shè)函數(shù)在處附近有定義,當(dāng)自變量在處有增量時(shí),則函數(shù)相應(yīng)地有增量,如果時(shí),與的比(也叫函數(shù)的平均變化率)有極限即無(wú)限趨近于某個(gè)常數(shù),我們把這個(gè)極限值叫做函數(shù)在處的導(dǎo)數(shù),記作,即注:1.函數(shù)應(yīng)在點(diǎn)的附近有定義,否則導(dǎo)數(shù)不存在。2.在定義導(dǎo)數(shù)的極限式中,趨近于0可正、可負(fù)、但不為0,而可能為0。3.是函數(shù)對(duì)自變量在范圍內(nèi)的平均變化率,它的幾何意義是過(guò)曲線上點(diǎn)()及點(diǎn))的割線斜率。4.導(dǎo)數(shù)是函數(shù)在點(diǎn)的處瞬時(shí)變化率,它反映的函數(shù)在點(diǎn)處變化

7、的快慢程度,它的幾何意義是曲線上點(diǎn)()處的切線的斜率。因此,如果在點(diǎn)可導(dǎo),則曲線在點(diǎn)()處的切線方程為。5.導(dǎo)數(shù)是一個(gè)局部概念,它只與函數(shù)在及其附近的函數(shù)值有關(guān),與無(wú)關(guān)。6.在定義式中,設(shè),則,當(dāng)趨近于0時(shí),趨近于,因此,導(dǎo)數(shù)的定義式可寫(xiě)成。7.若極限不存在,則稱(chēng)函數(shù)在點(diǎn)處不可導(dǎo)。8.若在可導(dǎo),則曲線在點(diǎn)()有切線存在。反之不然,若曲線在點(diǎn)()有切線,函數(shù)在不一定可導(dǎo),并且,若函數(shù)在不可導(dǎo),曲線在點(diǎn)()也可能有切線。一般地,其中為常數(shù)。特別地,。如果函數(shù)在開(kāi)區(qū)間內(nèi)的每點(diǎn)處都有導(dǎo)數(shù),此時(shí)對(duì)于每一個(gè),都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),從而構(gòu)成了一個(gè)新的函數(shù)。稱(chēng)這個(gè)函數(shù)為函數(shù)在開(kāi)區(qū)間內(nèi)的導(dǎo)函數(shù),簡(jiǎn)稱(chēng)導(dǎo)數(shù),也可記作,即函數(shù)在處的導(dǎo)數(shù)就是函數(shù)在開(kāi)區(qū)間上導(dǎo)數(shù)在處的函數(shù)值,即。所以函數(shù)在處的導(dǎo)數(shù)也記作。注:1.如果函數(shù)在開(kāi)區(qū)間內(nèi)每一點(diǎn)都有導(dǎo)數(shù),則稱(chēng)函數(shù)在開(kāi)區(qū)間內(nèi)可導(dǎo)。2.導(dǎo)數(shù)與導(dǎo)函數(shù)都稱(chēng)為導(dǎo)數(shù),這要加以區(qū)分:求一個(gè)函數(shù)的導(dǎo)數(shù),就是求導(dǎo)函數(shù);求一個(gè)函數(shù)在給定點(diǎn)的導(dǎo)數(shù),就是求導(dǎo)函數(shù)值。它們之間的關(guān)系是函數(shù)在點(diǎn)處的導(dǎo)數(shù)就是導(dǎo)函數(shù)在點(diǎn)的函數(shù)值。3.求導(dǎo)函數(shù)時(shí),只需將求導(dǎo)數(shù)式中的換成就可,即4.由導(dǎo)數(shù)的定義可知,求函數(shù)的導(dǎo)數(shù)的一般方法是:(1).求函數(shù)的改變量。(2).求平均變化率。(3).取極限,得導(dǎo)數(shù)。例1.求在3處的導(dǎo)數(shù)。例2.已知函數(shù)(1)求。(2)求函數(shù)在2處的導(dǎo)數(shù)。小結(jié):理解導(dǎo)數(shù)的概念并會(huì)運(yùn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論