平面與圓錐面的截線_第1頁
平面與圓錐面的截線_第2頁
平面與圓錐面的截線_第3頁
平面與圓錐面的截線_第4頁
平面與圓錐面的截線_第5頁
免費預(yù)覽已結(jié)束,剩余2頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、平面與圓錐面的截線、教學目標:1 .知識與內(nèi)容:(1)通過觀察平面截圓錐面的情境,體會定理2(2)利用Dandelin雙球證明定理2中情況(1)(3)通過探究,得出橢圓的準線和離心率,加深對橢圓結(jié)構(gòu)的理解2 .過程與方法:利用現(xiàn)代計算機技術(shù),動態(tài)地展現(xiàn) Dandelin兩球的方法,幫助學生利用幾何直觀進行思 維,培養(yǎng)學生的幾何直觀能力,重視直覺的培養(yǎng)和訓(xùn)練,直覺用于發(fā)現(xiàn),邏輯用于證明。3 .情感態(tài)度價值觀:通過親歷發(fā)現(xiàn)的過程,提高對圖形認識能力,重視合情推理和演繹推理的啟發(fā)、應(yīng)用和 培養(yǎng),讓學生辯證地觀察、分析問題。教、教學重點難點重點:(1)定理2的證明(2)橢圓準線和離心率的探究難點:橢圓

2、準線和離心率的探究 三、教學過程橢圓是生活中常見的圖形,是圓錐曲線中重要的一種。生成橢圓的方法有許多,例如:(1)圓按某一個方向作伸縮變換可以得到橢圓,如圖 1;(2)橢圓的定義(3)平面內(nèi)到定點和定直線的距離之比等于常數(shù) (0<e<1)的點的軌跡(4) 一動點到兩個定點連線的斜率之積是一個負常數(shù)生成軌跡是橢圓;(5)圓柱形物體的斜截口是橢圓,如圖 2如果用一平面去截一個正圓錐,所得截口曲線是橢圓嗎?還有其他情況嗎?讓我們共同來探究平面與圓錐面的截線。思考:如圖3 9 1 ,AD是等腰三角形ABC底邊上的高,BAD .直線l與AD相交于點P,且與AD的夾角為(0萬).試探究:當與滿

3、足什么關(guān)系?1 l與AB或AB的延長線、AC都相交;2 l與AB相交;3 l與BA勺延長線、AC都相交BDP加何畫板實驗探索如圖39 2,可以有如下結(jié)論:1當l與AB或AB的延長線、AC者防目交時,設(shè)l與AB(或AB的延長線)交于E,與AC交于F.因為是AEP的外角,所以必然有反之,當時,l與AB(或AB的延長線卜AC都相交.2當l與AB相交時,則l /AB,這時有 ; 反之,當時,l /AB,那么l與AB不相交.GAlEBFP3當l與BA勺延長線、AC都相交時,設(shè)l與BA的延長線交于G,因為 是APG的外角,所以;如果,那么l與BA勺延長線、AC都相交思考:將圖3 9中的等腰三角形拓廣為圓錐

4、,直線拓廣為平面,則得到圖3 10.如果用一平而且這個平面不通過圓錐的頂點,會出現(xiàn)哪些情況呢?如果平面與一條母線平行(相當于圖3 9 2中的 ),那么(1)平面就只與正圓錐的一半相交,這時的交線是一條拋物線;如果平面不與母線平行,那么會出現(xiàn)兩種情形:(2)平面只與圓錐的一半相交,這時的交線為橢圓;(3)平面與圓錐的兩部分都相交,這時的交線叫做雙曲線.歸納提升:定理 在空間中,取直線l為軸,直線1'與l相交于。點,其夾角為a , l'圍繞l旋轉(zhuǎn)得到以。為頂點,1'為母線的圓錐面,任取平面兀,若它與軸l交角為3 (兀與l平行,記住3= 0),則:(1) 3,平面兀與圓錐的交

5、線為橢圓;(2) 3 = a ,平面兀與圓錐的交線為拋物線;(3) 3 V a ,平面兀與圓錐的交線為雙曲線。思考:你能仿照定理1的證明方法證明定理2的結(jié)論1嗎?問題:利用Dandelin雙球(這兩個球位于圓錐的內(nèi)部,一個位于平面冗的上方,一個位于平面的下方,并且與平面 冗及圓錐均相切)證明:B>%平面冗與圓錐的交線為橢圓.討論:點A到點F的距離與點A到直線m的距離比小于1).證明1:利用橢圓第一定義,證明 FA+AE=BA+AC=定值,詳見課本.證明2:上面一個Dandelin球與圓錐面的交線為一個圓,并與圓錐的底面平行,記這個圓 所在平面為£如果平面冗與平面 北勺交線為m,

6、在圖中橢圓上任取一點 A, ig Dandelin球與平面 冗的切點為F,則點A到點F的距離與點A到直線m的距離比是(小于1).(稱點 F為這個橢圓的焦點,直線 m為橢圓的準線,常數(shù)為離心率e.)點評:利用可以證明截線為拋物線,雙曲線的情況,以離心率的范圍為準.探究:如圖3 12,1找出橢圓的準線;2探討P到焦點F1的距離與到兩平面交線 m的距離之比.圖3 12如圖3 12,上面一個Dandelin球與圓錐的交線為圓 S,記圓S,所在的平面為 設(shè) 與、的交線為m.在橢圓上任取一點P,連接PF1.在 中過P作m的垂線,垂足 為A過P乍、的垂線,垂足為B,連接AB,則AB是PA在平面、上的射影.容

7、易證明,m AB.故 PAB是平面 與平面、交成的二面角的平面角在Rt ABP中,APB,所以 PB PAcos . 1設(shè)過P的母線與圓S交于點Q1 ,則在Rt PQ1B中,Q1PB,所以 PB PQcos .2PF1 cosPF1cos )由 1 2 得.因為 0,故 coscos,則1.PA cos2PA cos由上所述可知,橢圓的準線為m,橢圓上任一點到焦點的距離與到準線的距離之比為常數(shù)cos,因此橢圓的離心率為e cos-, coscos即橢圓的離心率等于截面和圓錐的軸的交角的余弦與圓錐的母線和軸所成角的余弦之比討論:我們延用討論橢圓結(jié)構(gòu)特點的思路,討論一下雙曲線的結(jié) 構(gòu)特點.圖3 1

8、3如圖3 13,當 時,平面與圓錐的兩部分相交在圓錐的兩部分分別嵌入Dandelin球,與平面 的兩個切點分別是& F2,與圓錐兩部分截得的圓分別為§、S2.在截口上任取一點 P,連接PFi、PF2 .過P和圓錐的頂點O作母線,分別與兩個球切于 Qi、Q2,則PFi PQi,PF2 PQ2 .所以 |PFi PF2I |PQi PQ2I Q1Q2.由于QQ2為兩圓Si、S2所在平行平面之間的母線段長 ,因此Q1Q2的長為定值.由上所述可知,雙曲線的結(jié)構(gòu)特點是:雙曲上任意一點到兩個定點即雙曲線的兩個焦點 的距離之差的絕對值為常數(shù) .拓展:1.請證明定理2中的結(jié)論(2)2 .探究

9、雙曲線的準線和離心率3 .探索定理中(3)的證明,體會當B無限接近a時平面冗的極限結(jié)果 四、自我檢測練習1 .平面截球面和圓柱面所產(chǎn)生的截線形狀是 .分析:聯(lián)想立體幾何及上節(jié)所學,可得結(jié)論,要注意平面截圓柱面所得的截線的不同情況.答案:平面截球面所得的截線為圓;平面截圓柱面所得的截線為圓或橢圓;2 .判斷橢圓、雙曲線、拋物線內(nèi)一點到焦點距離與到準線距離之比與1的關(guān)系?分析:首先通過畫圖尋找規(guī)律,然后加以證明.答案:略.五、課外研究材料材料1.閱讀,和你的同學一起探討文后的問題:運動的天體受向心力和離心力的作用,天體運行的速度不同,它所獲得的合力也不同,這樣就導(dǎo)致形成不同的運行軌道,如人造衛(wèi)星發(fā)

10、射的速度等于或大于7.9km/s (第一宇宙速度即環(huán)繞速度)時,它就在空中沿圓或橢圓軌道運行;當發(fā)射的速度等于或大于11.2 km/s (第二宇宙速度即脫離速度)時,物體可以掙脫地球引力的束縛,成為繞太陽運動的人造行星或飛 到其它行星上去;當速度等于或大于 16.7 km/s (第三宇宙速度即逃逸速度)時,物體將掙脫 太陽引力的束縛,飛到太陽系以外的宇宙空間去。例如:人造衛(wèi)星、行星、慧星等由于運動 的速度的不同,它們的軌道是圓、橢圓、拋物線或雙曲線。(1)從天體運行的軌跡看,圓錐曲線也存在著統(tǒng)一,難道在冥冥宇宙中,有什么神奇的 力量,使天體運行也遵循著一種統(tǒng)一的規(guī)律嗎?(2)邀請你們的物理老師

11、、地理老師,請他們上一節(jié)天體運行課,更深入的理解圓錐曲線材料2.圓錐截線,是一個平面截正圓錐面而得到的曲線.設(shè)圓錐軸截面母線與軸的夾角為a ,截面和圓錐的軸的夾角為當截面不過頂點時,(1)當 =a時,即截面和一條母線平行時,交線是拋物線;(2)當a< V時,即截面不和母線平行,且只和圓錐面的一葉相交時,交線是橢圓.特 2別地,當 =_,即截面和圓錐面的軸垂直時,交線是圓.2(3)當0W <a時,即截面不與母線平行,且和圓錐面的兩葉都相交時,交線是雙曲 線.當截面過頂點時,(1)當 =a時,截面和圓錐面相切,交線退化為兩條重合直線.(2)當a< 0時,截面和圓錐面只相交于頂點,交線退化為一個點.2(3)當0W <a時,截面和圓錐面相交于兩條母線,交線退化為兩條相交直線.前一類情況中,拋物線、橢圓(包含圓)和雙曲線這三種曲線叫做非退

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論