全等三角形常見的幾何模型_第1頁
全等三角形常見的幾何模型_第2頁
全等三角形常見的幾何模型_第3頁
全等三角形常見的幾何模型_第4頁
全等三角形常見的幾何模型_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1、繞點(diǎn)型(手拉手模型)(1)自旋轉(zhuǎn):自旋轉(zhuǎn)構(gòu)造方法遇600旋600,造等邊三角形遇900旋900,造等腰直角遇等腰旋頂角,造旋轉(zhuǎn)全等 遇中點(diǎn)旋180,造中心對(duì)稱(2)共旋轉(zhuǎn)(典型的手拉手模型)接AE與例1、在直線 ABC的同一側(cè)作兩個(gè)等邊三角形 ABD和ABCE,連CD,證明:(1) AABEdDBC(2) AE=DC(3) AE與DC的夾角為60。(4) AAGBzDFB(5) AEGBzCFB(6) BH 平分/AHC GF/ACB變式練習(xí)1、如果兩個(gè)等邊三角形 ABD和ABCE,連接AE與CD,證明:(1) AABEdDBC(2) AE=DC(3) AE與DC的夾角為60。(4) AE

2、與DC的交點(diǎn)設(shè)為 H,BH平分/AHC變式練習(xí)2、如果兩個(gè)等邊三角形 ABD和ABCE,連接AE與CD,證明: MBE/DBC(2)AE=DC(3)AE與DC的夾角為60(5) AE與DC的交點(diǎn)設(shè)為 H,BH平分ZAHC3、(1)如圖1 ,點(diǎn)C是線段AB上一點(diǎn),分別以AC, BC為邊在AB的同側(cè)作等邊 ACM和ACBN ,連接AN , BM .分別取BM , AN的中點(diǎn)E, F,連接CE, CF, EF.觀察并猜想 CEF的形狀,并說明理由.(2)若將(1)中的“以AC, BC為邊作等邊 ACM和CBN”改為“以 AC, BC為腰在AB的同側(cè)作等腰 ACM和 3BN,”如圖2,其他條件不變,那

3、么(1)中的結(jié)論還成立嗎?若成立,加以證明;若不成立,請(qǐng)說明理由.例4、例題講解:1.已知 ABC等邊三角形,點(diǎn) D為直線BC上的一動(dòng)點(diǎn)(點(diǎn) D不與B,C重合),以AD為邊作菱形 ADEF(按A,D,E,F逆時(shí)針排列),使/ DAF=60 , CFg(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),求證: BD=CF ? (2)AC=CF+CD.(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上且其他條件不變時(shí),結(jié)論 AC=CF+CD 是否成立?若不成立,請(qǐng)寫出 AC、CF、CD之間存在的數(shù)量關(guān)系,并說明理由;(3)如圖3,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上且其他條件不變時(shí) ,補(bǔ)全圖形,并直接寫出 AC、CF、CD之間存在的數(shù)量關(guān)

4、系。2、半角模型說明:旋轉(zhuǎn)半角的特征是相鄰等線段所成角含一個(gè)二分之一角,通過旋轉(zhuǎn)將另外兩個(gè)和為二分之一的角拼接在一起,成對(duì)稱全等。例1、如圖,正方形 ABCD的邊長(zhǎng)為1 , AB,AD上各存在一點(diǎn)P、Q,若4APQ的周長(zhǎng)為求 PCQ的度數(shù)。例2、在正方形 ABCD中,若 M、N分別在邊BC、CD上移動(dòng),且滿足 MN=BM +DN ,求證:/ MAN=45 ;工MN 的周長(zhǎng)=2AB ; (3) AM AN 分別平分/ BMN 和/DNM。BM 、AB=AH.例3、在正方形ABCD中,已知/ MAN=45。若M、N分別在邊CB、DC的延長(zhǎng)線上移動(dòng): 試探究線段 MN求證:例4、在四邊形 ABCD 中,/B+ ZD=180 , AB=AD ,若 E、F分另在邊 BC、CD 且上,滿足 EF=BE+DF.4、已知:如圖1在皿3右中,上由,村=比.點(diǎn)區(qū)分別為線段砂上兩動(dòng)點(diǎn).若/口狂=將.探 究坡段即、球、EC三條線段之間的數(shù)量關(guān)系.小明的思路是:把加皿匚斃點(diǎn)A順時(shí)卻旋轉(zhuǎn)得到上3巫連結(jié)ED ,使i可題得到解決.請(qǐng)你參考小明的思路探究井解決下列問題: 猜想反 龐、兀三條線段之間存在球量關(guān)系式,并對(duì)你謝

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論