(完整版)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的圖像與性質(zhì)_第1頁(yè)
(完整版)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的圖像與性質(zhì)_第2頁(yè)
(完整版)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的圖像與性質(zhì)_第3頁(yè)
(完整版)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的圖像與性質(zhì)_第4頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的圖像與性質(zhì)(一)指數(shù)與指數(shù)函數(shù)1根式( 1)根式的概念根式的概念符號(hào)表示備注如果 xna ,那么 x 叫做 a 的 n 次方根n 1且 n N當(dāng) n 為奇數(shù)時(shí) ,正數(shù)的 n 次方根是一個(gè)正數(shù) ,負(fù)數(shù)的 n 次n a零的 n 次方根是零方根是一個(gè)負(fù)數(shù)當(dāng) n 為偶數(shù)時(shí) ,正數(shù)的 n 次方根有兩個(gè) ,它們互為相反數(shù)na ( a0)負(fù)數(shù)沒(méi)有偶次方根( 2)兩個(gè)重要公式an 為奇數(shù) n a na( a0);| a |0)n 為偶數(shù)a(a (n a ) na (注意 a 必須使 na 有意義)。2有理數(shù)指數(shù)冪( 1)冪的有關(guān)概念m正數(shù)的正分?jǐn)?shù)指數(shù)冪: a n n am (a0,

2、 m、 nN ,且 n1) ;m11正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪:a n0, m、 nN , 且 n 1)m(aa nn am0 的正分?jǐn)?shù)指數(shù)冪等于0,0 的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義 .注: 分?jǐn)?shù)指數(shù)冪與根式可以互化,通常利用分?jǐn)?shù)指數(shù)冪進(jìn)行根式的運(yùn)算。( 2)有理數(shù)指數(shù)冪的性質(zhì) aras=ar+s(a0,r 、 s Q); (ar)s=ars(a0,r 、s Q); (ab)r=arbs(a0,b0,r Q);. 3指數(shù)函數(shù)的圖象與性質(zhì)1y=axa10a0 時(shí), y1;(2) 當(dāng) x0 時(shí), 0y1;x0 時(shí) ,0y1x1(3) 在( - ,+)上是增函數(shù)( 3)在( -, +)上是減函數(shù)注: 如圖所示,是

3、指數(shù)函數(shù)(1) y=ax,(2) y=b x, ( 3),y=c x( 4) ,y=d x 的圖象,如何確定底數(shù) a,b,c,d 與 1 之間的大小關(guān)系?提示:在圖中作直線x=1 ,與它們圖象交點(diǎn)的縱坐標(biāo)即為它們各自底數(shù)的值,即c1d11a1b1, cd1ab 。即無(wú)論在軸的左側(cè)還是右側(cè),底數(shù)按逆時(shí)針?lè)较蜃兇蟆#ǘ?duì)數(shù)與對(duì)數(shù)函數(shù)1、對(duì)數(shù)的概念(1)對(duì)數(shù)的定義如果 axN (a0且 a1) ,那么數(shù) x 叫做以 a 為底, N 的對(duì)數(shù),記作x log aN ,其中 a叫做對(duì)數(shù)的底數(shù),N 叫做真數(shù)。(2)幾種常見(jiàn)對(duì)數(shù)對(duì)數(shù)形式特點(diǎn)記法一般對(duì)數(shù)底數(shù)為 a a0,且a 1log a N常用對(duì)數(shù)底數(shù)為

4、10lg N自然對(duì)數(shù)底數(shù)為 eln N2、對(duì)數(shù)的性質(zhì)與運(yùn)算法則(1)對(duì)數(shù)的性質(zhì)( a0,且a 1): log a10, log aa1, alog aNN , log aa NN 。2(2)對(duì)數(shù)的重要公式:換底公式: logb NlogaN(a,b均為大于零且不等于 1,N0) ;loga b log ab1a。logb(3)對(duì)數(shù)的運(yùn)算法則:如果 a0,且a1 , M0, N0 那么 log a (MN )log a Mlog aN ; log aMlog aN ;log a MN log aM nn log aM ( nR) ; logm bnn log a b 。am3、對(duì)數(shù)函數(shù)的圖象與性

5、質(zhì)a 10 a 1圖象性( 1)定義域:(0,+)質(zhì)( 2)值域: R( 3)當(dāng) x=1 時(shí), y=0 即過(guò)定點(diǎn)( 1,0)(4)當(dāng) 0x1時(shí), y (,0) ;( 4)當(dāng) x1 時(shí), y(,0) ;當(dāng)x1時(shí),y(0,)當(dāng)0 x時(shí),y(0,)1( 5)在( 0,+)上為增函數(shù)( 5)在(0,+)上為減函數(shù)注:確定圖中各函數(shù)的底數(shù)a,b, c, d 與 1 的大小關(guān)系提示:作一直線y=1,該直線與四個(gè)函數(shù)圖象交點(diǎn)的橫坐標(biāo)即為它們相應(yīng)的底數(shù)。 0cd1a1 時(shí),按交點(diǎn)的高低,從高到低依次為y=x 3, y=x 2, y=x , yx2 , y=x -1 ;1當(dāng) 0x 01,函數(shù) f(x)=log

6、ax 在區(qū)間 a,2a上的最大值與最小值之差為1 , 則 a=( )2(A) 2(B)2(C) 22(D)464.( A )已知 f (x)是周期為2 的奇函數(shù),當(dāng)0x1 時(shí), f ( x) lg x. 設(shè)a635)f ( ), bf ( ), cf ( ), 則(522( A ) a bc( B) b a c( C) cb a( D) c a b2ex 1 , x2,則不等式 f(x)2 的解集為()5.( B )設(shè) f(x)=log 3 (x21), x 2,(A) ( 1, 2)( 3, +)(B) (10 , +)(C)( 1,2)(10, +)(D) ( 1, 2)6( A)設(shè) Pl

7、og 2 3 , Qlog3 2 , Rlog 2 (log 3 2),則()RQPPRQQRPRPQ7 (A) 已知 log 1 blog 1 a log 1 c ,則 ()222A 2b2a2cB 2a2b2cC 2c2b2aD 2c2 a2b8( B)下列函數(shù)中既是奇函數(shù),又是區(qū)間1,1 上單調(diào)遞減的是()( A ) f ( x)sin x(B)f ( x)x 1(C)f (x)1(a xa x )(D)f ( x)ln2x22x9. ( A)函數(shù) ylog 1 (3 x2)的定義域是: ()2A1,)B(32 ,)C 32 ,1D( 32 ,110.(A) 已知函數(shù) ylog 1x與y

8、kx 的圖象有公共點(diǎn)A,且點(diǎn) A 的橫坐標(biāo)為 2,則 k ()4A 1B1C11442D211( B )若函數(shù) f (x)axb1( a0且 a1)的圖象經(jīng)過(guò)第二、三、四象限,則一定有()A 0 a 1且 b 0B a 1且b 0C 0 a 1且b 0D a 1且b 0a,2a(B)若函數(shù)f (x)log ax(0a1)在區(qū)間上的最大值是最小值的3 倍,則 a=12()A.2B.21142C.D.4213.(A) 已知 0x y a1,則有()( A ) log a ( xy)0(B) 0log a ( xy)1(C)1log a (xy )2( D) log a (xy ) 214. ( A

9、 )已知 f ( x6 )log2 x ,那么 f (8)等于()4(B)8(C)181( A )( D)3215( B )函數(shù) y lg|x|()A 是偶函數(shù),在區(qū)間 (,0) 上單調(diào)遞增B 是偶函數(shù),在區(qū)間( ,0)上單調(diào)遞減C是奇函數(shù),在區(qū)間(0, )上單調(diào)遞增D 是奇函數(shù),在區(qū)間(0, )上單調(diào)遞減16.( A )函數(shù) ylg( 4x )_.x3的定義域是717( B )函數(shù) y a1x (a0, a1) 的圖象恒過(guò)定點(diǎn)A ,若點(diǎn) A 在直線mx ny 1 0(mn110) 上,則的最小值為mn18( A )設(shè) g( x)ex , x0.1lnx, x則 g( g ( ) _0.219

10、( B )若函數(shù) f(x) =2x22 ax a1的定義域?yàn)?R,則 a 的取值范圍為 _.20 (B) 若函數(shù) f (x)loga ( xx 22a2 ) 是奇函數(shù),則 a=21.(B) 已知函數(shù)f ( x)11x ,求函數(shù) f ( x) 的定義域,并討論它的奇偶性和單調(diào)xlog 2 1x性.1136b 3(a3b 2)71248422參考答案:三:例題詮釋?zhuān)e一反三例 1.解:( 1) 2 ,( 2) a 29135 ab .5 a 2b 251(3)110變式:解:( 1) 1,(32)244ab4ab例2. 解:B變式:解: (0, 1 ) ;2例 3.解:() b 1()減函數(shù)。1(

11、) k3變式:解:( 1) a=1. (2)略例 4. 解:(1)-1. (2)1. (3) 1 .2133( 2)2.( 3)52.log 2變式:解:(1)2log 22242例5. 解:選D。變式:解: C例 6. 解: (1 ,3 1 , 1)3變式:解: a|2-23 a 2例 7. 解:( 1)當(dāng) x1 或 x1 時(shí), f ( x)g (x) ;( 2)當(dāng) x1 時(shí), f (x)g( x) ;(3)當(dāng) 1x 1且 x 0 時(shí), f ( x) g( x) 變式:解:( 1) f(x)=x -4 .( 2) F( x) = a2bx3 , F( -x ) = a2+bx3.xx當(dāng) a 0,且 b 0 時(shí), F( x)為非奇非偶函數(shù);8當(dāng) a=0,b 0 時(shí), F( x)為奇函數(shù);當(dāng) a 0,b=0 時(shí), F( x)為偶函數(shù);當(dāng) a=0,b=0 時(shí), F( x)既是奇函數(shù),又是偶函數(shù) .四:方向預(yù)測(cè)、勝利在望15 ADDDC;610 AADDA;1115 CADDB.16. (-, 3)(3,4)17. 418. 119.-1,020.222x0由 1x21 解 x 須滿(mǎn)足 1x得1x1,x01x01所以函數(shù) f ( x) 的定義域?yàn)椋?, 0)( 0,1) .因?yàn)楹瘮?shù) f ( x)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論