高等數(shù)學電子教案12-6ppt課件_第1頁
高等數(shù)學電子教案12-6ppt課件_第2頁
高等數(shù)學電子教案12-6ppt課件_第3頁
高等數(shù)學電子教案12-6ppt課件_第4頁
高等數(shù)學電子教案12-6ppt課件_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、一、方向場一、方向場 積分曲線積分曲線 設設( (1 1) )中中右右端端的的函函數(shù)數(shù)),(yxf在在區(qū)區(qū)域域D內(nèi)內(nèi)有有定定義義,那那么么過過D內(nèi)內(nèi)每每一一點點),(yxM作作一一條條以以),(yxf為為斜斜率率的的直直線線,并并把把向向量量 ),(, 1),(yxfyx 所所指指的的方方向向定定義義為為直直線線的的方方向向. .這這樣樣,對對于于D內(nèi)內(nèi)每每一一點點),(yx, ,方方程程( (1 1) )都都確確定定一一個個方方向向與與之之對對應應,于于是是我我們們說說方方程程( (1 1) )在在D內(nèi)內(nèi)確確定定了了一一個個方方向向場場)1(),(yxfy 一一階階微微分分方方程程定義定義1

2、 過過D內(nèi)內(nèi)任任一一點點),(yxM,做做一一個個以以M為為起起點點長長度度等等于于 的的向向量量),(, 1),(1),(20yxfyxfyx 如如圖圖所所示示,可可形形象象地地表表示示方方向向場場.xoy定義定義2等斜線的方程為等斜線的方程為.),(Cyxf 在這條等斜線上的各點處在這條等斜線上的各點處, 1120CC 方方向向場場中中具具有有同同一一方方向向)(Cy 的的點點的的軌軌跡跡叫叫做做方方程程( (1 1) )的的等等斜斜線線方向場畫法方向場畫法 適當畫出若干條等斜線適當畫出若干條等斜線,再在每條再在每條等斜線上適當選取若干個點畫出對應的向量等斜線上適當選取若干個點畫出對應的向

3、量0,這樣即可畫出這個方向場這樣即可畫出這個方向場.例例1 1畫出方程畫出方程22yxy 所確定的方向所確定的方向解解方程的等斜線為方程的等斜線為,22Cyx , 2, 5 . 1, 1, 5 . 0, 0 C取取畫出五條等斜線畫出五條等斜線, 再在再在每條等斜線上適當選取每條等斜線上適當選取若干個點畫出對應的向若干個點畫出對應的向量量0 ,如圖方向場如圖方向場.xoy場表示圖場表示圖.xoy的積分曲線的積分曲線的曲線就是方程的曲線就是方程點處的方向一致,這樣點處的方向一致,這樣線方向都和方向場在該線方向都和方向場在該處的切處的切內(nèi)的一條曲線在任一點內(nèi)的一條曲線在任一點如果如果)1(D定義定義

4、3如圖,如圖,)1, 0(),0 , 0(),1 , 0( 的三條積分曲線的三條積分曲線經(jīng)過點經(jīng)過點根據(jù)方向場即可大致根據(jù)方向場即可大致描畫出積分曲線描畫出積分曲線二、歐拉二、歐拉- -柯西近似法柯西近似法問題問題: : 一階微分方程的初值問題一階微分方程的初值問題 ,),(00yyyxfyxx的解不能或不易用初等積分法求出時的解不能或不易用初等積分法求出時,怎么辦?怎么辦?方法:近似積分法方法:近似積分法歐拉歐拉柯西近似法柯西近似法一階微分方程初值問題的解存在及獨一的一階微分方程初值問題的解存在及獨一的充分條件如下定理:充分條件如下定理:樣樣的的積積分分曲曲線線是是唯唯一一的的上上也也連連續(xù)

5、續(xù),那那末末這這在在線線一一定定存存在在如如果果的的積積分分曲曲通通過過點點上上,微微分分方方程程閉閉區(qū)區(qū)域域的的內(nèi)內(nèi)點點,那那末末在在是是上上連連續(xù)續(xù),點點在在閉閉區(qū)區(qū)域域右右端端的的函函數(shù)數(shù)設設方方程程定定理理DyfMDDyxMDyxf 0000)1(),(),()1(留意留意上上連連續(xù)續(xù)閉閉區(qū)區(qū)域域在在及及下下面面總總假假定定函函數(shù)數(shù)Dyxfyyxf),(),( 內(nèi)內(nèi)的的一一段段積積分分曲曲線線位位于于時時,對對應應,并并設設當當?shù)牡姆e積分分曲曲線線為為經(jīng)經(jīng)過過點點設設方方程程DHxxHxxyyxM 00000)(),()1( :,00上作歐拉折線上作歐拉折線在在Hxx ,如圖,如圖軸的

6、直線軸的直線作平行于作平行于,為步長;記為步長;記稱稱,等分,記等分,記把區(qū)間把區(qū)間), 2 , 1 , 0(,000nixxyihxxhnHhnHxxii 1x2x1 nxyxo0 xH;則則,交于點交于點,與直線,與直線段段為斜率的直線為斜率的直線作以作以,過點,過點值值求出函數(shù)求出函數(shù)上取點上取點在直線在直線001111110000000000),(),(),(yhyyyxMxxMMyMyyxfyxMxx ;,則則于于點點,交交直直線線為為斜斜率率的的直直線線段段作作以以,過過點點求求出出函函數(shù)數(shù)值值)(),(),(10011222222111111yyhyyhyyyxMxxMMyMyy

7、xf 1x2x1 nxyxo0 xH0M1M2M1x2x1 nxyxo0 xH0M1M2M如此一段接一段地如此一段接一段地作下去,得一條折線,作下去,得一條折線,稱歐拉折線稱歐拉折線 .),(,),(,),()(11112111110000nnnnnnxxxxxyyxxxxxyyxxxxxyyxy 方程為方程為).,(,)(,100110iiiiiiiiyxfynHhhyyyhyyyihxx 其其中中函數(shù)函數(shù)表示表示的一個表(函數(shù)表)來的一個表(函數(shù)表)來可列出可列出)(,xyyxnii 留意留意內(nèi),且內(nèi),且于于應位應位折線折線)()(lim)()(00 xxDHxxxxynnn 初值問題的近

8、似解初值問題的近似解例例2 2,計計算算到到四四位位小小數(shù)數(shù)取取步步長長的的近近似似解解上上求求初初值值問問題題在在)1 . 0(,11 , 0022 hyyxyx解解.1 . 011 . 01 . 022110iiiiiiyxyyyyyixh ,列表計算如下列表計算如下.,數(shù)數(shù)表表兩兩列列就就表表示示近近似似解解的的函函其其中中iiyxiixiyiy 1247035689101 . 02 . 04 . 07 . 00 . 03 . 05 . 06 . 08 . 09 . 00 . 19000. 0 8094. 0 6474. 0 4176. 0 0000. 1 7260. 0 5713. 0

9、 4954. 0 3361. 0 2493. 0 1559. 0 9055. 08337. 07610. 08151. 00000. 17855. 07592. 07781. 08677. 09339. 0三、小結(jié)三、小結(jié)歐拉柯西近似法是圖形與分析相結(jié)合的歐拉柯西近似法是圖形與分析相結(jié)合的近似積分方法近似積分方法根本概念根本概念方向場、等斜線、積分曲線、方向場、等斜線、積分曲線、歐拉柯西近似法歐拉柯西近似法練練 習習 題題.1 . 0 , 002. 01,32.0 , 5 . 01 . 01,1020求近似解求近似解上上在在;按;按近似解近似解上求上求在在;按;按位小數(shù)):位小數(shù)):上的近似解(計算到三上的近似解(計算到三程初值問題在指定區(qū)間程初值問題在指定區(qū)間求下列各題所給微分方求下列各題所給微分方 hyyxyhyyxyxx練習題答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論