![冪級數(shù)測試題_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/6558f0cc-a75a-4094-81c0-4127cce5331e/6558f0cc-a75a-4094-81c0-4127cce5331e1.gif)
![冪級數(shù)測試題_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/6558f0cc-a75a-4094-81c0-4127cce5331e/6558f0cc-a75a-4094-81c0-4127cce5331e2.gif)
![冪級數(shù)測試題_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/6558f0cc-a75a-4094-81c0-4127cce5331e/6558f0cc-a75a-4094-81c0-4127cce5331e3.gif)
![冪級數(shù)測試題_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/6558f0cc-a75a-4094-81c0-4127cce5331e/6558f0cc-a75a-4094-81c0-4127cce5331e4.gif)
![冪級數(shù)測試題_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/6558f0cc-a75a-4094-81c0-4127cce5331e/6558f0cc-a75a-4094-81c0-4127cce5331e5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第十四章冪級數(shù)單選題:1設(shè)冪級數(shù)的收斂半徑為R,則下列斷語中正確的是(A)在上一致收斂。(B)在內(nèi)某些點(diǎn)處非絕對收斂。(C)的收斂半徑大于。(D)對任意的,在上一致收斂。2。若冪級數(shù)在處收斂,在處發(fā)散,則該級數(shù)(A)在處發(fā)散;(B)在處收斂;(C)收斂區(qū)間為;(D)當(dāng)時(shí)發(fā)散。3冪級數(shù)級數(shù)的收斂域是(A)(B)(C)(D)4若冪級數(shù)的收斂半徑為R,那么(A),(B),(C),(D)不一定存在 。5如果能展開成的冪級數(shù),那么該冪級數(shù)(A)是的麥克勞林級數(shù);(B)不一定是的麥克勞林級數(shù);(C)不是的麥克勞林級數(shù);(D)是在點(diǎn)處的泰勒級數(shù).6.如果,則冪級數(shù)(A)當(dāng)時(shí),收斂;(B)當(dāng)時(shí),收斂;(C)當(dāng)
2、時(shí),發(fā)散;(D)當(dāng)時(shí),發(fā)散7。設(shè)級數(shù)在處是收斂的,則此級數(shù)在處(A)發(fā)散;(B)絕對收斂;(C)條件收斂;(D)不能確定斂散性。8冪級數(shù)在其收斂區(qū)間的兩個(gè)端點(diǎn)處A全是發(fā)散的.B。全是收斂的C.左端點(diǎn)發(fā)散,右端點(diǎn)收斂.D左端點(diǎn)收斂,右端點(diǎn)發(fā)散9.函數(shù)展開成的冪級數(shù)的方法是。10.冪級數(shù)的收斂域?yàn)榇鸢福?10DDBDAADDDA填空題:1.若冪級數(shù)在內(nèi)收斂,則應(yīng)滿足_。2.設(shè)冪級數(shù)的收斂半徑為2,則級數(shù)的收斂區(qū)間為_.3。級數(shù)的和函數(shù)為_。4.設(shè)是一等差數(shù)列,則冪級數(shù)收斂域是_.5.與有相同的_.6.的冪級數(shù)展開式_。7。冪級數(shù)只有在_區(qū)間內(nèi)才有和函數(shù).8。經(jīng)過逐項(xiàng)微分或逐項(xiàng)積分后冪級數(shù)_不變.9
3、。的冪級數(shù)表達(dá)式_。10.級數(shù)在區(qū)間_收斂.答案:1.。4。 ( -1, 1)5.收斂區(qū)間.6。7。收斂。8。收斂半徑.9.計(jì)算題1.求冪級數(shù)的收斂域及和函數(shù)。2。求冪級數(shù)的收斂域及和函數(shù).3.求冪級數(shù)的收斂半徑與收斂域( 1)4。將函數(shù)展開為的冪級數(shù),并指出收斂域。5。求函數(shù)在x=1處泰勒展開式。6.設(shè)冪級數(shù)當(dāng)時(shí)有且求該冪級數(shù)的函數(shù).7.將展成x的冪級數(shù).8.求冪級數(shù)的和函數(shù)。9。試求冪級數(shù)的收斂區(qū)域及和函數(shù)10。設(shè),確定的連續(xù)區(qū)間,并求積分的值答案:1.解因且當(dāng)時(shí)級數(shù)都發(fā)散,故該級數(shù)的收斂域?yàn)椋?1, 1 ),令,則,。2。解:收斂半徑,當(dāng)時(shí),原級數(shù)發(fā)散,故原級數(shù)的收斂域?yàn)? -1, 1
4、).設(shè)其和函數(shù)為,3。 ( 1 )解記,由于,故收斂半徑R=1,收斂區(qū)間為( -1, 1 )當(dāng)時(shí),由于,故級數(shù)發(fā)散,所以該級數(shù)的收斂域?yàn)椋?-1, 1 ) .( 2 )解記因?yàn)樗允諗堪霃絉=1,收斂域?yàn)?-1, 1 。4.解而而級數(shù)與的收斂域都是 1, 1 ,故當(dāng)時(shí)5.解因.6。設(shè)和函數(shù)則即.解上述關(guān)于的二階微分方程,得。7.解易看出,而兩邊求導(dǎo),得.8。級數(shù)的和函數(shù)為9.由于級數(shù)在上收斂,所以當(dāng)時(shí),有10.因?yàn)閮缂墧?shù)的收斂域是,所以在上的連續(xù),且可逐項(xiàng)積分.。證明題:1。設(shè)在內(nèi)收斂,若也收斂,則。2.設(shè)f為冪級數(shù)在( -R, R )上的和函數(shù),若f為奇函數(shù),則原級數(shù)僅出現(xiàn)奇次冪的項(xiàng),若f為
5、偶函數(shù),則原級數(shù)僅出現(xiàn)偶次冪的項(xiàng).3.設(shè)函數(shù)定義在 0, 1上,證明它在(0, 1 )滿足下述方程:4.設(shè)證明當(dāng)時(shí),級數(shù)收斂。5.設(shè)冪級數(shù),的收斂半徑分別為,設(shè),證明:當(dāng)時(shí),冪級數(shù)絕對收斂。6.設(shè),求證:其中7。設(shè),.證明:當(dāng)時(shí),滿足方程.8。若冪級數(shù)的收斂半徑為R(0),且在(或時(shí)收斂,則級數(shù)在 0, R (或R, 0 )上一致收斂.9。設(shè)函數(shù)在區(qū)間內(nèi)的各階導(dǎo)數(shù)一致有界,即存在正數(shù)M,對一切,有,證明:對內(nèi)任一點(diǎn)與有。10。證明:滿足方程.答案:1.證明:因?yàn)楫?dāng)收斂,有又當(dāng)時(shí),收斂,從而可知在左連續(xù),于是.2。,,當(dāng)為奇函數(shù)時(shí),有,從而,這時(shí)必有。當(dāng)為偶函數(shù)時(shí),有此式當(dāng)且僅當(dāng).3.證明:設(shè)則。所以故。 0x1。4。因?yàn)樗?取極限得到,從而級數(shù)的收斂半徑故時(shí),級數(shù)收斂。5.對于任意,由于,所以,絕對收斂。又所以絕對收斂。6.時(shí),,故從而7.由于,冪級數(shù)的收斂半徑是1,所以當(dāng)時(shí),可微,且故即滿足方程.8.證明:設(shè)級數(shù)在時(shí)收斂,對于有=已知級
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度豪華辦公室租賃及商務(wù)接待服務(wù)合同
- 電子產(chǎn)品運(yùn)輸保險(xiǎn)合同模板
- 工程管理與規(guī)范操作指導(dǎo)手冊
- 投資融資協(xié)議書
- 工副業(yè)承包經(jīng)營合同
- 農(nóng)產(chǎn)品國際貿(mào)易與合作指南
- 個(gè)人租房合同協(xié)議書
- 原始股權(quán)轉(zhuǎn)讓協(xié)議書
- 承包注塑機(jī)維修合同
- 銷售服務(wù)費(fèi)合同
- 勞動(dòng)合同薪酬與績效約定書
- 消除醫(yī)療歧視管理制度
- JT-T-1180.2-2018交通運(yùn)輸企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化建設(shè)基本規(guī)范第2部分:道路旅客運(yùn)輸企業(yè)
- 2024交管12123駕照學(xué)法減分必考題庫附答案
- 腦脊液常規(guī)檢查
- 2024年蘇州經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫附答案
- 柴油機(jī)油-標(biāo)準(zhǔn)
- 監(jiān)獄安全課件
- 《初三開學(xué)第一課 中考動(dòng)員會 中考沖刺班會》課件
- 慢性萎縮性胃炎的護(hù)理查房
- 住院醫(yī)師規(guī)范化培訓(xùn)臨床實(shí)踐能力結(jié)業(yè)專科技能考核(全科醫(yī)學(xué)科)婦科檢查及分泌物留取
評論
0/150
提交評論