版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、1排列與排列數(shù)(1)排列:從n個(gè)不同元素中取出m(mn)個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列(2)排列數(shù):從n個(gè)不同元素中取出m(mn)個(gè)元素的所有不同排列的個(gè)數(shù)叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),記作A.2組合與組合數(shù)(1)組合:從n個(gè)不同元素中取出m(mn)個(gè)元素合成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合(2)組合數(shù):從n個(gè)不同元素中取出m(mn)個(gè)元素的所有不同組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù),記作C.排列數(shù)、組合數(shù)的公式及性質(zhì)排列數(shù)組合數(shù)公式An(n1)(n2)(nm1) C性質(zhì)An??;0!1C1;CC_;CCC
2、注意:易混淆排列與組合問題,區(qū)分的關(guān)鍵是看選出的元素是否與順序有關(guān),排列問題與順序有關(guān),組合問題與順序無關(guān)一、排列問題直接法把符合條件的排列數(shù)直接列式計(jì)算優(yōu)先法優(yōu)先安排特殊元素或特殊位置捆綁法把相鄰元素看作一個(gè)整體與其他元素一起排列,同時(shí)注意捆綁元素的內(nèi)部排列插空法對不相鄰問題,先考慮不受限制的元素的排列,再將不相鄰的元素插在前面元素排列的空當(dāng)中定序問題除法處理對于定序問題,可先不考慮順序限制,排列后,再除以定序元素的全排列間接法正難則反、等價(jià)轉(zhuǎn)化的方法排列典型例題:有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù)(1)選5人排成一排;(2)排成前后兩排,前排3人,后排4人;(3)
3、全體排成一排,甲不站排頭也不站排尾;(4)全體排成一排,女生必須站在一起;(5)全體排成一排,男生互不相鄰解:(1)從7人中選5人排列,有A765432 520(種)(2)分兩步完成,先選3人站前排,有A種方法,余下4人站后排,有A種方法,共有AA5 040(種)(3)法一:(特殊元素優(yōu)先法)先排甲,有5種方法,其余6人有A種排列方法,共有5A3 600(種)法二:(特殊位置優(yōu)先法)首尾位置可安排另6人中的兩人,有A種排法,其他有A種排法,共有AA3 600(種)(4)(捆綁法)將女生看作一個(gè)整體與3名男生一起全排列,有A種方法,再將女生全排列,有A種方法,共有AA576(種)(5)(插空法)
4、先排女生,有A種方法,再在女生之間及首尾5個(gè)空位中任選3個(gè)空位安排男生,有A種方法,共有AA1 440(種)1.用0到9這10個(gè)數(shù)字,可以組成沒有重復(fù)數(shù)字的三位偶數(shù)的個(gè)數(shù)為()A324 B648C328 D3602.用1,2,3,4這四個(gè)數(shù)字組成無重復(fù)數(shù)字的四位數(shù),其中恰有一個(gè)偶數(shù)夾在兩個(gè)奇數(shù)之間的四位數(shù)的個(gè)數(shù)為_3.甲、乙兩人要在一排8個(gè)空座上就坐,若要求甲、乙兩人每人的兩旁都有空座,則不同的坐法有()A10種B16種C20種 D24種2、 組合問題組合典型例題:某運(yùn)動(dòng)隊(duì)有男運(yùn)動(dòng)員6名,女運(yùn)動(dòng)員4名,若選派5人外出比賽,在下列情形中各有多少種選派方法?(1)男運(yùn)動(dòng)員3名,女運(yùn)動(dòng)員2名;(2)
5、至少有1名女運(yùn)動(dòng)員解:(1)任選3名男運(yùn)動(dòng)員,方法數(shù)為C,再選2名女運(yùn)動(dòng)員,方法數(shù)為C,共有CC120(種)方法(2)法一:(直接法)至少1名女運(yùn)動(dòng)員包括以下幾種情況:1女4男,2女3男,3女2男,4女1男,由分類加法計(jì)數(shù)原理可得總選法數(shù)為CCCCCCCC246(種)法二:(間接法)“至少有1名女運(yùn)動(dòng)員”的反面是“全是男運(yùn)動(dòng)員”,因此用間接法求解,不同選法有CC246(種)1.甲、乙兩人從4門課程中各選修2門,則甲、乙所選的課程中至少有1門不相同的選法共有()A30種 B36種C60種 D72種2.若從1,2,3,9這9個(gè)整數(shù)中同時(shí)取4個(gè)不同的數(shù),其和為偶數(shù),則不同的取法共有()A60種B63
6、種C65種 D66種3、 排列組合綜合問題(1)簡單的排列與組合的綜合問題;(2)分組、分配問題1.將標(biāo)號(hào)為1,2,3,4的四個(gè)籃球分給三位小朋友,每位小朋友至少分到一個(gè)籃球,且標(biāo)號(hào)1,2的兩個(gè)籃球不能分給同一個(gè)小朋友,則不同的分法種數(shù)為()A15B20C30 D422.將5位同學(xué)分別保送到北京大學(xué)、上海交通大學(xué)、中山大學(xué)這3所大學(xué)就讀,每所大學(xué)至少保送1人,則不同的保送方法共有()A150種 B180種C240種 D540種此題是高考出現(xiàn)頻率最高的題型,我把他稱為均分問題:對于部分均分,解題時(shí)注意重復(fù)中的次數(shù)是均勻分組的階乘數(shù),即若有m組元素個(gè)數(shù)相等,則分組時(shí)應(yīng)除以m!,分組過程中有幾個(gè)這樣
7、的均勻分組,就要除以幾個(gè)這樣的全排列數(shù)(3)涂色問題:涂色的規(guī)則是“相鄰區(qū)域涂不同的顏色”,在處理涂色問題時(shí),可按照選擇顏色的總數(shù)進(jìn)行分類討論,每減少一種顏色的使用,便意味著多出一對不相鄰的區(qū)域涂相同的顏色(還要注意兩兩不相鄰的情況),先列舉出所有不相鄰區(qū)域搭配的可能,再進(jìn)行涂色即可。例如:最多使用四種顏色涂圖中四個(gè)區(qū)域,不同的涂色方案有多少種?解:可根據(jù)使用顏色的種數(shù)進(jìn)行分類討論(1)使用4種顏色,則每個(gè)區(qū)域涂一種顏色即可:(2)使用3種顏色,則有一對不相鄰的區(qū)域涂同一種顏色,首先要選擇不相鄰的區(qū)域:用列舉法可得:不相鄰所以涂色方案有:(3)使用2種顏色,則無法找到符合條件的情況,所以討論終
8、止總計(jì)種常見題型1將2名女教師,4名男教師分成2個(gè)小組,分別安排到甲、乙兩所學(xué)校輪崗支教,每個(gè)小組由1名女教師和2名男教師組成,則不同的安排方案共有()A24種 B12種C10種 D9種解析:選B第一步,為甲校選1名女老師,有C2(種)選法;第二步,為甲校選2名男教師,有C6(種)選法;第三步,為乙校選1名女教師和2名男教師,有1種選法,故不同的安排方案共有26112(種),選B.2從0,1,2,3,4中取出3個(gè)數(shù)字,組成沒有重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)為()A24 B36C48 D60解析:選C法一:百位數(shù)字只能從1,2,3,4中任取一個(gè),有A種方法十位與個(gè)位可從剩下的4個(gè)數(shù)中取2個(gè),有A種方法,
9、則三位數(shù)的個(gè)數(shù)有AA44348.故選C.法二:從0,1,2,3,4中取出3個(gè)數(shù)字排在百位、十位與個(gè)位的方法總數(shù)有A,其中0作為百位的三位數(shù)有A,則三位數(shù)的個(gè)數(shù)有AA5434348.故選C.3如圖,MON的邊OM上有四點(diǎn)A1,A2,A3,A4,ON上有三點(diǎn)B1,B2,B3,則以O(shè),A1,A2,A3,A4,B1,B2,B3為頂點(diǎn)的三角形個(gè)數(shù)為()A30 B42C54 D56解析:選B用間接法先從這8個(gè)點(diǎn)中任取3個(gè)點(diǎn),最多構(gòu)成三角形C個(gè),再減去三點(diǎn)共線的情形即可共有CCC42(個(gè))4有5本不同的教科書,其中語文書2本,數(shù)學(xué)書2本,物理書1本若將其并排擺放在書架的同一層上,則同一科目書都不相鄰的放法種
10、數(shù)是()A24 B48C72 D96解析:選B據(jù)題意可先擺放2本語文書,當(dāng)1本物理書在2本語文書之間時(shí),只需將2本數(shù)學(xué)書插在前3本書形成的4個(gè)空中即可,此時(shí)共有AA種擺放方法;當(dāng)1本物理書放在2本語文書一側(cè)時(shí),共有AACC種不同的擺放方法,由分類加法計(jì)數(shù)原理可得共有AAAACC48(種)擺放方法5(2016福建三明調(diào)研)將A,B,C,D,E排成一列,要求A,B,C在排列中順序?yàn)椤癆,B,C”或“C,B,A”(可以不相鄰),這樣的排列數(shù)有()A12種 B20種C40種 D60種解析:選C(排序一定用除法)五個(gè)元素沒有限制全排列數(shù)為A,由于要求A,B,C的次序一定(按A,B,C或C,B,A),故除
11、以這三個(gè)元素的全排列A,可得這樣的排列數(shù)有240(種)6現(xiàn)有2個(gè)紅球、3個(gè)黃球、4個(gè)白球,同色球不加區(qū)分,將這9個(gè)球排成一列,有_種不同的方法(用數(shù)字作答)解析:第一步,從9個(gè)位置中選出2個(gè)位置,分給相同的紅球,有C種選法;第二步,從剩余的7個(gè)位置中選出3個(gè)位置,分給相同的黃球,有C種選法;第三步,剩下的4個(gè)位置全部分給4個(gè)白球,有1種選法根據(jù)分步乘法計(jì)數(shù)原理可得,排列方法共有CC1 260(種)答案:1 2607從6名同學(xué)中選派4人分別參加數(shù)學(xué)、物理、化學(xué)、生物四科知識(shí)競賽,若其中甲、乙兩名同學(xué)不能參加生物競賽,則選派方案共有_種解析:特殊位置優(yōu)先考慮,既然甲、乙都不能參加生物競賽,則從另外4個(gè)人中選擇一個(gè)參加,有C種方案,然后從剩下的5個(gè)人中選擇3個(gè)人參加剩下3科,有A種方案,故共有CA460240(種)方案答案:2408(2017黃岡質(zhì)檢)在高三某班進(jìn)行的演講比賽中,共有5位選手參加,其中3位女生,2位男生,如果2位男生不能連續(xù)出場,且女生甲不能排第一個(gè),那么出場的順序的排法種數(shù)為_解析:不相鄰問題插空法.2位男生不能連續(xù)出場的排法共有N1AA72(種),女生甲排第一個(gè)且2位男生不連續(xù)出場的排法共有N2AA12(種),所以出場順序的排法種數(shù)為NN1N260.答案:609把座位編號(hào)為1,2,3,4,5的五張電影票全部分給甲、乙、丙、丁四個(gè)人,每人至少一張,至多兩張,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省棗莊市滕州市2024-2025學(xué)年七年級上學(xué)期1月期末考試道德與法治試卷(含答案)
- 江蘇省宿遷市2024-2025學(xué)年高三1月第一次調(diào)研測試化學(xué)試題(含答案)
- 09年1月中英合作財(cái)務(wù)管理真題及答案
- 福建省南平市劍津中學(xué)2020-2021學(xué)年高三語文模擬試題含解析
- 2025年度保密協(xié)議模板:涉密數(shù)據(jù)存儲(chǔ)服務(wù)合同3篇
- 2024網(wǎng)絡(luò)游戲內(nèi)容安全與防沉迷系統(tǒng)咨詢合同
- 2024版單位汽車租賃合同范本
- 2024軟件著作權(quán)登記與反侵權(quán)調(diào)查專業(yè)服務(wù)合同3篇
- 2025年度農(nóng)產(chǎn)品加工合作合同3篇
- 2024訂車協(xié)議范本
- 北師大版五年級數(shù)學(xué)下冊第3單元第1課時(shí)分?jǐn)?shù)乘法(一)課件
- 2024-2030年中國汽車保險(xiǎn)杠行業(yè)市場發(fā)展現(xiàn)狀及前景趨勢分析報(bào)告
- 智研咨詢發(fā)布:中國種豬行業(yè)市場現(xiàn)狀、發(fā)展概況、未來前景分析報(bào)告
- 六年級上冊分?jǐn)?shù)四則混合運(yùn)算100題及答案
- 2024年信息系統(tǒng)項(xiàng)目管理師(綜合知識(shí)、案例分析、論文)合卷軟件資格考試(高級)試題與參考答案
- 《GPU體系結(jié)構(gòu)》課件2
- GB/T 44860-2024面向工業(yè)應(yīng)用的邊緣計(jì)算應(yīng)用指南
- 北京市海淀區(qū)2023屆高三上學(xué)期期末考試化學(xué)試卷 附答案
- 小班防詐騙安全
- 深圳某項(xiàng)目空調(diào)蓄冷水池施工技術(shù)方案
- 汽車保險(xiǎn)與理賠課件 7.3新能源汽車定損
評論
0/150
提交評論