初二數(shù)學教案矩形_第1頁
初二數(shù)學教案矩形_第2頁
初二數(shù)學教案矩形_第3頁
初二數(shù)學教案矩形_第4頁
初二數(shù)學教案矩形_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、.初二數(shù)學教案矩形教學建議知識構造重難點分析本節(jié)的重點是矩形的性質和斷定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個角是直角,因此就增加了一些特殊的性質和不同于平行四邊形的斷定方法。矩形的這些性質和斷定定理即是平行四邊形性質與斷定的延續(xù),又是以后要學習的正方形的根底。本節(jié)的難點是矩形性質的靈敏應用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。假如得到一個平行四邊形是矩形,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,老師在教學過

2、程中應給予足夠重視。教法建議根據本節(jié)內容的特點和與平行四邊形的關系,建議老師在教學過程中注意以下問題:1.矩形的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。2.矩形在現(xiàn)實中的實例較多,在講解矩形的性質和斷定時,老師可自行準備或由學生準備一些生活實例來進展判別應用了哪些性質和斷定,既增加了學生的參與感又穩(wěn)固了所學的知識.3. 假如條件允許,老師在講授這節(jié)內容前,可指導學生按照教材145頁圖4-30所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手才能和參與感,有在教學中有實在的體例,使學生對知識的掌握更輕松些.4. 在對性質的講解中,老師可將學生分成假設干組,每個學生

3、分別對事先準備后的圖形進展邊、角、對角線的測量,然后在組內進展整理、歸納.5. 由于矩形的性質定理證明比較簡單,老師可引導學生分析思路,由學生來進展詳細的證明.6.在矩形性質應用講解中,為便于理解掌握,老師要注意題目的層次安排。矩形教學設計教學目的1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)絡;能說出矩形的四個角都是直角和矩形的的對角線相等的性質;能推出直角三角形斜邊上的中線等于斜邊的一半的性質。2.能運用以上性質進展簡單的證明和計算。此外,從矩形與平行四邊形的區(qū)別與聯(lián)絡中,體會特殊與一般的關系,浸透集合的思想,培養(yǎng)學生辨證唯物主義觀點。引導性材料想一想:一般四邊形與平行四邊形之間的互相關系?

4、在圖4.5-l的圓圈中填上四邊形和平行四邊形的字樣來說明這種關系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質;具有一些特殊的性質。小學里已學過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角小學里已學過等特殊性質,那么,假如在圖4.5-1中再畫一個圈表示矩形,這個圈應畫在哪里?讓學生初步感知矩形與平行四邊形的附屬關系。演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當平行四邊形的一個內角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形矩形。問題1:從上面的演示過程,可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了

5、矩形?說明與建議:老師的演示應充分展現(xiàn)變化過程,從而讓學生深切地感受到短形是無數(shù)個平行四邊形中的一個特例,同時,又使學生能正確地給出矩形的定義。問題2:矩形是特殊的平行四邊形,它除了有一個角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質呢?說明與建議:讓學生分組探究,有必要時,老師可引導學生,根據研究平行四邊形獲得的經歷,分別從邊、角、對角線三個方面探究矩形的特性,還可提醒學生,這種探究的根底是矩形有一個角是直角矩形的四個角都相等矩形性質定理1,要學生給以證明即課本例1后練習第1題。學生能探究得出矩形的鄰邊互相垂直的特性,老師可作說明:這與矩形的四個角是直角本質上是一致的,所以不必另列為

6、一個性質。學生探究矩形的四條對角線的大小關系時,如有困難,可引導學生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質定理2。問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質?說明與建議:1讓學生先觀察圖4.5-3,并議論猜測,如學生有困難,老師可引導學生觀察圖中的一個直角三角形如RtABC,讓學生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關系,然后讓學生自己給出如下證明:證明:在矩形ABCD中,對角線AC、BD相交于點O,AC=BD矩形的對角線相等。,AO=CO在RtABC中,BO是斜邊AC上的中線,且 。直角三角形

7、斜邊上的中線等于斜邊的一半。例題解析例1:即課本例1說明:此題難度不大,又有助于學生加深對性質定理的理解,教學中應引導學生探究解法:如圖4.5-4,欲求對角線BD的長,由于BAD=90,AB=4cm,那么只要再找出RtABD中一條直角邊的長,或一個銳角的度數(shù),再從條件AOD=120出發(fā),應用矩形的性質可知,ADB=30,另外,還可以引導學生探究AOB是什么特殊的三角形等邊三角形,課本用了第一種解法,并給出理解幾何計算題書寫格式的示范;第二種解法如下:四邊形ABCD是矩形,AC=BD矩形的對角線相等。又 。OA=BO,AOB是等腰三角形,AOD=120,AOB=180- 120= 60AOB是等

8、邊三角形。BO=AB=4cm,BD=2BO=244cm=8cm。例2:補充例題:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點,EF平分BED交BD于點F。l猜測:EF與BD具有怎樣的關系?2試證明你的猜測。解:lEF垂直平分BD。2證明:ABC=90,點E是AC的中點。直角三角形的斜邊上的中線等于斜邊的一半。同理: 。BE=DE。又EF平分BED。EFBD,BF=DF。說明:本例是一道不給出結論,需要學生自己觀察-猜測-討論的幾何命題,有助于開展學生的推理包括合情推理和邏輯推理才能。假如學生不適應,或有困難,老師可根據實際情況加以引導,這種訓練,重要的不是猜對了沒有?

9、證明了沒有?而是讓學生經歷這樣一種自己研究圖形性質的過程,順便指出:求解此題的重要根底是識圖技能-能從復雜圖形中分解出如圖4.5-6所示的三個根本圖形。課堂練習1.課本例1后練習題第2題。2.課本例1后練習題第4題。小結1.矩形的定義:2.歸納總結矩形的性質:對邊平行且相等四個角都是直角對角線平行且相等3.直角三角形斜邊上的中線等于斜邊的一半。4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。作業(yè)其實,任何一門學科都離不開死記硬背,關鍵是記憶有技巧,“死記之后會“活用。不記住那些

10、根底知識,怎么會向高層次進軍?尤其是語文學科涉獵的范圍很廣,要真正進步學生的寫作程度,單靠分析文章的寫作技巧是遠遠不夠的,必須從根底知識抓起,每天擠一點時間讓學生“死記名篇佳句、名言警句,以及豐富的詞語、新穎的材料等。這樣,就會在有限的時間、空間里給學生的腦海里注入無限的內容。日積月累,積少成多,從而收到水滴石穿,繩鋸木斷的成效。要練說,得練聽。聽是說的前提,聽得準確,才有條件正確模擬,才能不斷地掌握高一級程度的語言。我在教學中,注意聽說結合,訓練幼兒聽的才能,課堂上,我特別重視老師的語言,我對幼兒說話,注意聲音清楚,上下起伏,抑揚有致,富有吸引力,這樣能引起幼兒的注意。當我發(fā)現(xiàn)有的幼兒不專心聽別人發(fā)言時,就隨時表揚那些靜聽的幼兒,或是讓他重復別人說過的內容,抓住教育時機,要求他們專心聽,用心記。平時我還通過各種興趣活動,培養(yǎng)幼兒邊聽邊記,邊聽邊想,邊聽邊說的才能,如聽詞對詞,聽詞句說意思,聽句子辯正誤,聽故事講述故事,聽謎語猜謎底,聽智力故事,動腦筋,出主意,聽兒歌上句,接兒歌下句等,這樣幼兒學得生動活潑,輕松愉快,既訓練了聽的才能,強化了記憶,又開展了思維,為說打下

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論