




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、6.2DefinitionsandexamplesDEFINITION6.LI(Eigenvaluc.cigenvector)LetAbeacomplexsquarematrix.ThenifisacomplexnumberandXanon-zerocomplexcolumnvectorsatisfyingAX=X,wecallXaneigenvectorA,whileiscalledaneigenvalueofA.WcalsosaythatofXisaneigenvectorcorrespondingtotheeigenvalueSointheaboveexampleHandarceigen
2、vectorscorrespondingto)and2,respectively.WcshallgiveanalgorithmwhichstartsfromtheeigenvaluesofA=hbandconstructsarotationmatrixAsuchthatPAPisdiagonal.Asnotedabove,ifisaneigenvalueofannxnmatrixA,withcorrespondingeigenvectorX9then(A-In)X=0,withXH0,sodet(A一/“)=0andthereareatmostndistincteigenvaluesofA.C
3、onverselyifdet(A一/)=0.then(A-/n)X=0hasanon-trivialsolutionXand50, isaneigenvalueofAwithXacorrespondingeigenvector.DEFINITION6.L2(CharacteristicpolynomiaLequation)Thepolynomialdet(A-In)iscalledthecharacteristicpolynomialofAandisoftendenotedbychA().Theequationdet(A一/)=0iscalledthecharacteristicequatio
4、nofA.HencetheeigenvaluesofAarctherootsofthecharacteristicpolynomialofA.a加Fora2x2matrixA=,itiseasilyverifiedthatthecharacteristicpolynomialis(traceA)+detA,wheretraceA=a+disthesumofthediagonalelementsofA.2nEXAMPLE6.2.1FindtheeigenvaluesofA=Iandfindalleigen-vectors.12)Solution.Thecharacteristicequation
5、ofAis2-4+3=0,or(D(-3)=0.Hence=1or3.Theeigenvectorequation(A-In)X=0reducestoor2-1nr2-(2-)x+y=Ox+(2-)y=0Taking=1givesx+y=Ox+y=Owhichhassolutionx=-y,yarbitrary.Consequentlytheeigenvectorscorrespondingto),、=1arethevectorsII,with.0.9Taking=3gives-x+y=0Jxy=0.whichhassolutionx=-y,yarbitrary.Consequentlythe
6、eigenvectorscorre-自spendingto=3arcthevectorsII,withyW0.J兇Ournextresulthaswideapplicability:THEOREM6.2.1LetAbea2x2matrixhavingdistincteigenvalues】and2andcorrespondingeigenvectorsandX2.LetPbethematrixwhosecolumnsareandX2,respectively.ThenPisnon-singularand012Proof.SupposeAX1=aandAX2=22-Wcshowthatthesy
7、stemofhomogeneousequationsxX+yX2=0hasonlythetrivialsolution.Thenbytheorem2.5.10thematrixP=x/4isnonsingular.SoassumexX+yX2=0.(6.3)ThenA(xX+yX2)=AO=0,sox(AX)+y(AX2)=0.HencexXx+=0.(6.4)Multiplyingequation6.3by1andsubtractingfromequation6.4gives"WO.Hencey=O,as(2-J0andX2W0,Thenfromequation6.3,xX,=0a
8、ndhencex=0.ThentheequationsAX=andAX2=2X2giveAP=Ax/xi=Avi/Ac=xi/X2十.1_尸_1.17.1.J2nEXAMPLE6.2.2LetA=bethematrixofexample6.2.1.Thenarceigenvectorscorrespondingtoeigenvaluesrioi1and3,respectively.HenceifP=wehavePAP=Therearetwoimmediateapplicationsoftheorem6.1.1.ThefirstistothecalculationofAn:IfLAP=diag(
9、,).thenA=Pdiag(,)Pand121,Thesecondapplicationistosolvingasystemoflineardifferentialequationsdx,dy,=ax+bx=xc+dxdtdtJb-whereA=isamatrixofrealorcomplexnumbersandxandycdarefunctionsoft.ThesystemcanbewritteninmatrixformasX=AX,dxIY卜Ie=/Iyl_lLJUiWemakethesubstitutionX=PY,where丫=ThenxandyarcalsofunctionsE11
10、ofrand=,=AX=(P-AP)Y=Fi0y.XPY02An=(Pdiag(-l,-2)piy=P"吆(一1),(一2)kr:張力'L14JLJLHence=(-1J1=1311oir4-314_l|_033x24-3114x2"_|_-l1_4-3x2-3+3x244x23+4x2Tosolvethedifferentialequationsystem,makethesubstitutionX=PY.Thenx=X+3y,y=x,+4.Thesystemthenbecomes''一"A|sox=x(0)6一andy=y(0)2f.No
11、w.ii兌=-2yP七加2刊;3U%"Iso?=75and凹=2戶,HenceLLLx=71/+3(6產(chǎn))=一11,+18產(chǎn),y=-11/+4(6«-)=一15+24e-2/Foramorecomplicatedexamplewesolveasystemofinhomogeneousrecurrencerelations.EXAMPLE6.2.4Solvethesystemofrecurrencerelations%=2x-另用=一與+2%+2giventhatx0=0and=0.Solution.ThesystemcanbewritteninmatrixformasA=W
12、here2-1L-i2JandXm=4X+8,-11-2匕Itisthenaneasyinductiontoprovethat(6.5)X/A“X0+(41+A+QB.Alsoitiseasytoverifybytheeigenvaluemethodthatll+31-3113A=_=_+5|J31+322nn17IwhereU=IandV=.Hence11-11.n(3"-141-3+1)A+人=-U+V.-22Thenequation6.5gives1301(3-1)F-11七二(產(chǎn)/7+(產(chǎn)+,mJIm_whichsimplifiestoxn'2+1-3,->&g
13、t;|_%12一5-3%_|Hencex=(In+1-3")/and);=(2-5+3"y4.REMARK6.2.1If(A-Af1existed(thatis,ifdet(A-A)W0,orequivalently,if1isnotaneigenvalueofA),thenwecouldhaveusedtheformula+A+4=(一A)(A一,2尸.(6.6)HowevertheeigenvaluesofAarc1and3intheaboveproblem,soformula6.6cannotbeusedthere.Ourdiscussionofeigenvalues
14、andeigenvectorshasbeenlimitedto2x2matrices.Thediscussionismorecomplicatedformatricesofsizegreaterthantwoandisbestlefttoasecondcourseinlinearalgebra.Neverthelessthefollowingresultisausefulgeneralizationoftheorem6.2.1.Thereaderisreferredto28,page350foraproof.THEOREM6.2.2LetAAbeannxnmatrixhavingdistinc
15、teigenvalues,andcorrespondingeigenvectorsX,LetPbethematrixwhosecolumnsarerespectivelyXi,ThenPisnoih-singularandfi0001P-lAP=02°° |o0JAnotherusefulresultwhichcoversthecasewheretherearemultipleeigenvaluesisthefollowing(Thereaderisreferredto28,pages351-352foraproof):THEOREM6.1.3SupposethecharacteristicpolynomialofAhasthefactorizationwherec>,qarethedistincteigenvaluesofA.Supposethatfori=1,wchavenullityq/“一
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 木質(zhì)樂(lè)器制作工藝傳承考核試卷
- 票務(wù)代理行程規(guī)劃與咨詢考核試卷
- 電池制造過(guò)程中的市場(chǎng)趨勢(shì)分析考核試卷
- 木材的天然防腐和抗菌性能考核試卷
- 植物油加工過(guò)程中的副產(chǎn)物利用策略考核試卷
- 電視接收設(shè)備的智能廣告投放系統(tǒng)考核試卷
- 泵的耐高溫材料與涂層技術(shù)考核試卷
- 有機(jī)化學(xué)原料的可持續(xù)采購(gòu)策略考核試卷
- 廈門城市職業(yè)學(xué)院《醫(yī)學(xué)成像原理與圖像處理》2023-2024學(xué)年第二學(xué)期期末試卷
- 萍鄉(xiāng)衛(wèi)生職業(yè)學(xué)院《文化產(chǎn)業(yè)項(xiàng)目策劃》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年醫(yī)療器械經(jīng)營(yíng)質(zhì)量管理規(guī)范培訓(xùn)課件
- 小學(xué)語(yǔ)文教材的變遷
- 多式聯(lián)運(yùn)智慧物流平臺(tái)構(gòu)建方案
- 2024年21起典型火災(zāi)案例及消防安全知識(shí)專題培訓(xùn)(消防月)
- 支票抵押借款協(xié)議
- 2024年個(gè)人之間清賬協(xié)議書模板
- GB/T 36187-2024冷凍魚糜
- 人教版四年級(jí)上冊(cè)數(shù)學(xué)【選擇題】專項(xiàng)練習(xí)100題附答案
- GB/T 31078-2024低溫倉(cāng)儲(chǔ)作業(yè)規(guī)范
- 湖南省長(zhǎng)沙市雨花區(qū)2023-2024學(xué)年八年級(jí)下學(xué)期期末考試歷史試題(解析版)
- 空天地一體化算力網(wǎng)絡(luò)資源調(diào)度機(jī)制
評(píng)論
0/150
提交評(píng)論