版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、基本初等函數(shù)一【要點(diǎn)精講】1指數(shù)與對數(shù)運(yùn)算(1)根式的概念:定義:若一個(gè)數(shù)的次方等于,則這個(gè)數(shù)稱的次方根。即若,則稱的次方根,1)當(dāng)為奇數(shù)時(shí),次方根記作;2)當(dāng)為偶數(shù)時(shí),負(fù)數(shù)沒有次方根,而正數(shù)有兩個(gè)次方根且互為相反數(shù),記作性質(zhì):1);2)當(dāng)為奇數(shù)時(shí),;3)當(dāng)為偶數(shù)時(shí),。(2)冪的有關(guān)概念規(guī)定:1)N*;2); n個(gè)3)Q,4)、N* 且性質(zhì):1)、Q);2)、 Q);3) Q)。(注)上述性質(zhì)對r、R均適用。(3)對數(shù)的概念定義:如果的b次冪等于N,就是,那么數(shù)稱以為底N的對數(shù),記作其中稱對數(shù)的底,N稱真數(shù)1)以10為底的對數(shù)稱常用對數(shù),記作;2)以無理數(shù)為底的對數(shù)稱自然對數(shù),記作;基本性質(zhì):
2、1)真數(shù)N為正數(shù)(負(fù)數(shù)和零無對數(shù));2);3);4)對數(shù)恒等式:。運(yùn)算性質(zhì):如果則1);2);3)R)換底公式:1);2)。2指數(shù)函數(shù)與對數(shù)函數(shù)(1)指數(shù)函數(shù):定義:函數(shù)稱指數(shù)函數(shù),1)函數(shù)的定義域?yàn)镽;2)函數(shù)的值域?yàn)椋?)當(dāng)時(shí)函數(shù)為減函數(shù),當(dāng)時(shí)函數(shù)為增函數(shù)。函數(shù)圖像:1)指數(shù)函數(shù)的圖象都經(jīng)過點(diǎn)(0,1),且圖象都在第一、二象限;2)指數(shù)函數(shù)都以軸為漸近線(當(dāng)時(shí),圖象向左無限接近軸,當(dāng)時(shí),圖象向右無限接近軸);3)對于相同的,函數(shù)的圖象關(guān)于軸對稱 , , , , ,函數(shù)值的變化特征:(2)對數(shù)函數(shù):定義:函數(shù)稱對數(shù)函數(shù),1)函數(shù)的定義域?yàn)椋?)函數(shù)的值域?yàn)镽;3)當(dāng)時(shí)函數(shù)為減函數(shù),當(dāng)時(shí)函數(shù)為
3、增函數(shù);4)對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)函數(shù)圖像:1)對數(shù)函數(shù)的圖象都經(jīng)過點(diǎn)(0,1),且圖象都在第一、四象限;2)對數(shù)函數(shù)都以軸為漸近線(當(dāng)時(shí),圖象向上無限接近軸;當(dāng)時(shí),圖象向下無限接近軸);4)對于相同的,函數(shù)的圖象關(guān)于軸對稱。函數(shù)值的變化特征:,.,. (3)冪函數(shù)1)掌握5個(gè)冪函數(shù)的圖像特點(diǎn)2)a0時(shí),冪函數(shù)在第一象限內(nèi)恒為增函數(shù),a0時(shí)過(0,0)4)冪函數(shù)一定不經(jīng)過第四象限四【典例解析】題型1:指數(shù)運(yùn)算例1(1)計(jì)算:;(2)化簡:。解:(1)原式=;(2)原式=。點(diǎn)評:根式的化簡求值問題就是將根式化成分?jǐn)?shù)指數(shù)冪的形式,然后利用分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)求解,對化簡求值的結(jié)果,一般用分?jǐn)?shù)
4、指數(shù)冪的形式保留;一般的進(jìn)行指數(shù)冪運(yùn)算時(shí),化負(fù)指數(shù)為正指數(shù),化根式為分?jǐn)?shù)指數(shù)冪,化小數(shù)為分?jǐn)?shù)運(yùn)算,同時(shí)兼顧運(yùn)算的順序。例2(1)已知,求的值解:,又,。點(diǎn)評:本題直接代入條件求解繁瑣,故應(yīng)先化簡變形,創(chuàng)造條件簡化運(yùn)算。題型2:對數(shù)運(yùn)算(2).(江蘇省南通市2008屆高三第二次調(diào)研考試)冪函數(shù)的圖象經(jīng)過點(diǎn),則滿足27的x的值是 .答案 例3計(jì)算(1);(2);(3)解:(1)原式 ;(2)原式 ;(3)分子=;分母=;原式=。點(diǎn)評:這是一組很基本的對數(shù)運(yùn)算的練習(xí)題,雖然在考試中這些運(yùn)算要求并不高,但是數(shù)式運(yùn)算是學(xué)習(xí)數(shù)學(xué)的基本功,通過這樣的運(yùn)算練習(xí)熟練掌握運(yùn)算公式、法則,以及學(xué)習(xí)數(shù)式變換的各種技巧
5、例4設(shè)、為正數(shù),且滿足 (1)求證:;(2)若,求、的值。證明:(1)左邊;解:(2)由得,由得 由得由得,代入得, 由、解得,從而。點(diǎn)評:對于含對數(shù)因式的證明和求值問題,還是以對數(shù)運(yùn)算法則為主,將代數(shù)式化簡到最見形式再來處理即可。題型3:指數(shù)、對數(shù)方程例5(江西師大附中2009屆高三數(shù)學(xué)上學(xué)期期中)已知定義域?yàn)镽的函數(shù)是奇函數(shù).(1)求a,b的值;(2)若對任意的,不等式恒成立,求k的取值范圍.解 (1) 因?yàn)槭荝上的奇函數(shù),所以從而有 又由,解得(2)解法一:由(1)知由上式易知在R上為減函數(shù),又因是奇函數(shù),從而不等式等價(jià)于 因是R上的減函數(shù),由上式推得即對一切從而解法二:由(1)知又由題
6、設(shè)條件得即 整理得,因底數(shù)21,故 上式對一切均成立,從而判別式例6(2008廣東 理7)設(shè),若函數(shù),有大于零的極值點(diǎn),則( B )ABCD【解析】,若函數(shù)在上有大于零的極值點(diǎn),即有正根。當(dāng)有成立時(shí),顯然有,此時(shí),由我們馬上就能得到參數(shù)的范圍為.點(diǎn)評:上面兩例是關(guān)于含指數(shù)式、對數(shù)式等式的形式,解題思路是轉(zhuǎn)化為不含指數(shù)、對數(shù)因式的普通等式或方程的形式,再來求解。題型4:指數(shù)函數(shù)的概念與性質(zhì)例7設(shè)( )A0 B1 C2 D3解:C;,。點(diǎn)評:利用指數(shù)函數(shù)、對數(shù)函數(shù)的概念,求解函數(shù)的值例8已知試求函數(shù)f(x)的單調(diào)區(qū)間。解:令,則x=,tR。所以即,(xR)。因?yàn)閒(x)=f(x),所以f(x)為偶
7、函數(shù),故只需討論f(x)在0,+)上的單調(diào)性。任取,且使,則(1)當(dāng)a1時(shí),由,有,所以,即f(x)在0,+上單調(diào)遞增。(2)當(dāng)0a1時(shí),由,有,所以,即f(x)在0,+上單調(diào)遞增。綜合所述,0,+是f(x)的單調(diào)增區(qū)間,(,0)是f(x)的單調(diào)區(qū)間。點(diǎn)評:求解含指數(shù)式的函數(shù)的定義域、值域,甚至是證明函數(shù)的性質(zhì)都需要借助指數(shù)函數(shù)的性質(zhì)來處理。特別是分兩種情況來處理。題型5:指數(shù)函數(shù)的圖像與應(yīng)用例9若函數(shù)的圖象與x軸有公共點(diǎn),則m的取值范圍是( )Am1 B1m0 Cm1 D0m1解:,畫圖象可知1m1時(shí),函數(shù)y=logax和y=(1a)x的圖象只可能是( )解:當(dāng)a1時(shí),函數(shù)y=logax的圖
8、象只能在A和C中選,又a1時(shí),y=(1a)x為減函數(shù)。答案:B點(diǎn)評:要正確識(shí)別函數(shù)圖像,一是熟悉各種基本函數(shù)的圖像,二是把握圖像的性質(zhì),根據(jù)圖像的性質(zhì)去判斷,如過定點(diǎn)、定義域、值域、單調(diào)性、奇偶性例14設(shè)A、B是函數(shù)y= log2x圖象上兩點(diǎn), 其橫坐標(biāo)分別為a和a+4, 直線l: x=a+2與函數(shù)y= log2x圖象交于點(diǎn)C, 與直線AB交于點(diǎn)D。(1)求點(diǎn)D的坐標(biāo);(2)當(dāng)ABC的面積大于1時(shí), 求實(shí)數(shù)a的取值范圍解:(1)易知D為線段AB的中點(diǎn), 因A(a, log2a ), B(a+4, log2(a+4),所以由中點(diǎn)公式得D(a+2, log2 )。(2)SABC=S梯形AACC+S
9、梯形CCBB- S梯形AABB= log2, 其中A,B,C為A,B,C在x軸上的射影。由SABC= log21, 得0 a22。點(diǎn)評:解題過程中用到了對數(shù)函數(shù)性質(zhì),注意底數(shù)分類來處理,根據(jù)函數(shù)的性質(zhì)來處理復(fù)雜問題。題型8:指數(shù)函數(shù)、對數(shù)函數(shù)綜合問題例15在xOy平面上有一點(diǎn)列P1(a1,b1),P2(a2,b2),Pn(an,bn),對每個(gè)自然數(shù)n點(diǎn)Pn位于函數(shù)y=2000()x(0a1)的圖象上,且點(diǎn)Pn,點(diǎn)(n,0)與點(diǎn)(n+1,0)構(gòu)成一個(gè)以Pn為頂點(diǎn)的等腰三角形。(1)求點(diǎn)Pn的縱坐標(biāo)bn的表達(dá)式;(2)若對于每個(gè)自然數(shù)n,以bn,bn+1,bn+2為邊長能構(gòu)成一個(gè)三角形,求a的取值
10、范圍;(3)設(shè)Cn=lg(bn)(nN*),若a取(2)中確定的范圍內(nèi)的最小整數(shù),問數(shù)列Cn前多少項(xiàng)的和最大?試說明理由解:(1)由題意知:an=n+,bn=2000()。(2)函數(shù)y=2000()x(0abn+1bn+2。則以bn,bn+1,bn+2為邊長能構(gòu)成一個(gè)三角形的充要條件是bn+2+bn+1bn,即()2+()10,解得a5(1)。 5(1)a10。(3)5(1)a10,a=7bn=2000()。數(shù)列bn是一個(gè)遞減的正數(shù)數(shù)列,對每個(gè)自然數(shù)n2,Bn=bnBn1。于是當(dāng)bn1時(shí),BnBn1,當(dāng)bn1時(shí),BnBn1,因此數(shù)列Bn的最大項(xiàng)的項(xiàng)數(shù)n滿足不等式bn1且bn+11,由bn=20
11、00()1得:n20。n=20。點(diǎn)評:本題題設(shè)從函數(shù)圖像入手,體現(xiàn)數(shù)形結(jié)合的優(yōu)越性,最終還是根據(jù)函數(shù)性質(zhì)結(jié)合數(shù)列知識(shí),以及三角形的面積解決了實(shí)際問題。例16已知函數(shù)為常數(shù))(1)求函數(shù)f(x)的定義域;(2)若a=2,試根據(jù)單調(diào)性定義確定函數(shù)f(x)的單調(diào)性(3)若函數(shù)y=f(x)是增函數(shù),求a的取值范圍。解:(1)由a0,x0 f(x)的定義域是。(2)若a=2,則設(shè) , 則故f(x)為增函數(shù)。(3)設(shè) f(x)是增函數(shù),f(x1)f(x2)即 聯(lián)立、知a1,a(1,+)。點(diǎn)評:該題屬于純粹的研究復(fù)合對函數(shù)性質(zhì)的問題,我們抓住對數(shù)函數(shù)的特點(diǎn),結(jié)合一般函數(shù)求定義域、單調(diào)性的解題思路,對“路”處
12、理即可題型9:課標(biāo)創(chuàng)新題例17對于在區(qū)間上有意義的兩個(gè)函數(shù)f(x)與g(x),如果對任意的,均有,則稱f(x)與g(x)在上是接近的,否則稱f(x)與g(x)在上是非接近的,現(xiàn)有兩個(gè)函數(shù)與,給定區(qū)間。(1)若與在給定區(qū)間上都有意義,求a的取值范圍;(2)討論與在給定區(qū)間上是否是接近的。解:(1)兩個(gè)函數(shù)與在給定區(qū)間有意義,因?yàn)楹瘮?shù)給定區(qū)間上單調(diào)遞增,函數(shù)在給定區(qū)間上恒為正數(shù),故有意義當(dāng)且僅當(dāng);(2)構(gòu)造函數(shù),對于函數(shù)來講, 顯然其在上單調(diào)遞減,在上單調(diào)遞增。且在其定義域內(nèi)一定是減函數(shù)由于,得所以原函數(shù)在區(qū)間內(nèi)單調(diào)遞減,只需保證當(dāng)時(shí),與在區(qū)間上是接近的; 當(dāng)時(shí),與在區(qū)間上是非接近的點(diǎn)評:該題屬于
13、信息給予的題目,考生首先理解“接近”與“非接近”的含義,再對含有對數(shù)式的函數(shù)的是否“接近”進(jìn)行研究,轉(zhuǎn)化成含有對數(shù)因式的不等式問題,解不等式即可。例18設(shè),且,求的最小值。解:令 ,。 由得, ,即, , ,當(dāng)時(shí),。點(diǎn)評:對數(shù)函數(shù)結(jié)合不等式知識(shí)處理最值問題,這是出題的一個(gè)亮點(diǎn)。同時(shí)考察了學(xué)生的變形能力。例19.(2009陜西卷文)設(shè)曲線在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為,則的值為A. B. C. D.1答案 B解析 對,令得在點(diǎn)(1,1)處的切線的斜率,在點(diǎn)(1,1)處的切線方程為,不妨設(shè),則, 故選 B.五【思維總結(jié)】1(其中)是同一數(shù)量關(guān)系的三種不同表示形式,因此在許多問題中需要熟練進(jìn)行它們之間的相互轉(zhuǎn)化,選擇最好的形式進(jìn)行運(yùn)算.在運(yùn)算中,根式常常化為指數(shù)式比較方便,而對數(shù)式一般應(yīng)化為同應(yīng)化為同底;2要熟練運(yùn)用初中學(xué)習(xí)的多項(xiàng)式各種乘法公式;進(jìn)行數(shù)式運(yùn)算的難點(diǎn)是運(yùn)用各種變換技巧,如配方、因式分解、有理化(分子或分母)、拆項(xiàng)、添項(xiàng)、換元等等,這些都是經(jīng)常使用的變換技巧,必須通過各種題型的訓(xùn)練逐漸積累經(jīng)驗(yàn);3解決含指數(shù)式或?qū)?shù)式的各種問題,要熟練運(yùn)用指數(shù)、對數(shù)運(yùn)算法則及運(yùn)算性質(zhì),更關(guān)鍵是熟練運(yùn)用指數(shù)與對數(shù)函數(shù)的性質(zhì),其中單調(diào)性是使用率比較高的知識(shí);4指數(shù)、對數(shù)函數(shù)值的變化特點(diǎn)(上面知識(shí)結(jié)構(gòu)表中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年北師大版選修5歷史上冊階段測試試卷含答案
- 2025年湘師大新版七年級語文上冊階段測試試卷
- 2025年人教A版八年級生物上冊月考試卷
- 2025年浙教新版九年級生物下冊月考試卷含答案
- 二零二五美容院美容院連鎖品牌授權(quán)與區(qū)域保護(hù)合同3篇
- 二零二五版環(huán)保型建材模具研發(fā)生產(chǎn)合作合同4篇
- 二零二五年度高端嬰幼兒配方奶粉銷售代理合同3篇
- 二零二五年度黨政機(jī)關(guān)異地培訓(xùn)酒店預(yù)訂服務(wù)合同2篇
- 二零二五年民房買賣合同附屬設(shè)施租賃服務(wù)協(xié)議4篇
- 2025年度磨工職業(yè)發(fā)展規(guī)劃與勞動(dòng)合同實(shí)施計(jì)劃4篇
- 2024年內(nèi)蒙古自治區(qū)專業(yè)技術(shù)人員繼續(xù)教育公需課考試答案
- T-CSTM 01124-2024 油氣管道工程用工廠預(yù)制袖管三通
- 2019版新人教版高中英語必修+選擇性必修共7冊詞匯表匯總(帶音標(biāo))
- 新譯林版高中英語必修二全冊短語匯總
- 基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)模糊推理系統(tǒng)的游客規(guī)模預(yù)測研究
- 河道保潔服務(wù)投標(biāo)方案(完整技術(shù)標(biāo))
- 品管圈(QCC)案例-縮短接臺(tái)手術(shù)送手術(shù)時(shí)間
- 精神科病程記錄
- 閱讀理解特訓(xùn)卷-英語四年級上冊譯林版三起含答案
- 清華大學(xué)考博英語歷年真題詳解
- 人教版三年級上冊口算題(全冊完整20份 )
評論
0/150
提交評論