版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、Longitudinal deformation l;Twist deformation ;Bending deformation?vElasticalDeflection curve/Nl EAn/pM l GI,pzEA GIEIstiffness/zzM l EIdeflection curve function v = v ( x )rotating angle function = ( x )v: deflection or displacement : rotating angle or slopedtan( )dvv xxddvx Review1zME I2 3 2(1)vv)(
2、xv ZIExMxv)()( Basic differential equation of elastical curve ( )( )dZM xvxxCEI( )( )d dZM xv xx xEICxD( )( )dZEI vxM xxC( )( )d dZEI v xM xx xCxDBoundary conditionKnown deflectionand rotating angle例例6.1 Determine deflection curve function of beam shown in fig.22)(xqxMMoment function32( )d26ZqqxEI v
3、 xxxCC 43( )d624ZqqxEI v xxxCxDCxD 0,0:vvlx63qlC 84qlD)43(24)(434xxllEIqxvz)(6)(33xlEIqxvzxl qEIz)(84maxzEIqlv)(63maxmaxzEIqlvBoundary conditonlFbRAlFaRBxlFbxRxMA)(1)0(ax)()(2axFxRxMA)(axFxlFb)(lxa1212CxlFbvEIZ11316DxCxlFbvEIZRARB332)(66axFxlFbvEIZ22DxC2222)(22CaxFxlFbvEIZ021 DD)(62221bllFbCC0:,0:02
4、1vlxvx2121,:vvvvaxabFlBoundary conditoncontinuity conditon例例6.2)(62221blxxEIlFbvZ)()(632232axblblxxEIlbFvZaFv1v2ABCbIf a = b)(483maxZEIFlv2max16ZFlEIIf a b)(39)(322maxlEIblFbvZ3220blxIf b = 0Fb = M00.5773lxl)(392maxZEIMlvZEIMllvv16)221 (中maxmax2.64vvv中(2)ACCv,)()(mvFvvCCC)(48)(3ZCEIFlFv)()(mFCCC)(24
5、)(2ZCEIFlm)()(mFAAA)(16)(2ZAEIFlF)(48)(2ZAEIFlm)(24)481161(22ZZEIFlEIFlFABCm=Fl/2l/2l/2FABCl/2l/2ABCml/2l/2例例6.3 Found vC and AExam 6.4 Found vC of beam.Exchange loading )(8)2(41EIaqvCavvBBC222)(842EIqavB)(632EIqaB)(2474EIqa21CCCvvv21CCCvvv)(24412472444EIqaEIqaEIqaABCaaqABCqABCqBqACvB2 B2Rigidizatio
6、n in SequeceAssume BC is rigid, AB deformedavvBBC111)(127234231EIqaEIaMEIaQvBBB)(12194111EIqaavvBBC)(23221EIqaEIaMEIaQBBB Assume BC deformed , AB is rigid)(842EIqavC)(2441421EIqavvvCCCABCaaqBACqvC 1aaAa B1vB1QBMBvC2ACBqvC1)(6(6dd2xaxEIxqvC)(2441d42EIqavvaaCCEquivlently replace the loading )(4881)236
7、(6)23(42EIqaaaEIaqavC2 . 1828182Element finer, precision higherin x section dF = q dx , integrateABCaaqABCaaxqdxAC3a/2F=qaExam 6.5 found vC()/2CABvvvaaABqCABEI2EICaaaaABC2ql2qlvC2qlACABq/2C0,ACCAvvvACvvCABqC4qa34ql121CCCCvvvvExam 6.6 Found support reactionEquilibrium equationqlRRAC22Constrained cond
8、ition021CCCvvv)(245384)2(5441EIqlEIlqvCPhysical equation )(648)2(332EIlREIlRvCCCComplementaryequation0624534EIlREIqlCSolved)(45 qlRC)(83qlRRBAqABEICllRARBRCCqll1Cv2CvRCllComplementaryequationABCaaFABClaaEIEADqABClaaFDqlFC Exam 6.7 Found support reaction0DvCDClvAElFlCD)()(qvFvvCCCEIaFFvC3)2()(3EIqaqv
9、C2441)(3EIqaEAFlEIFavD244138430CDClv43412483qaIFalIAConstrained conditionPhysical equation lvmaxmax(1)Change loading and support(2)Reduce span length;(3) Optimize shape of section 11()1000700l(4) Optimize shape of beam zWxMx)()(max)(xMM )()(xMxWvariable section beamF 6)(2xFhxb2 6)(hxFxb6)(bxFxhstepp
10、ed shaftsuperposed beam軸力軸力N扭矩扭矩Mn彎矩彎矩M剪力剪力QNAnpMIzMyI NA npMW zMWNllEAEnpM lGIlGzMlEI1zMEIv/l v材料的材料的力學(xué)性能力學(xué)性能拉壓實(shí)驗(yàn)拉壓實(shí)驗(yàn)扭轉(zhuǎn)實(shí)驗(yàn)扭轉(zhuǎn)實(shí)驗(yàn)截面的截面的幾何性質(zhì)幾何性質(zhì)靜矩與形心靜矩與形心慣性矩與慣性矩與慣性積慣性積變形幾何變形幾何變形物理變形物理拉壓變形拉壓變形 l扭轉(zhuǎn)變形扭轉(zhuǎn)變形 彎曲變形彎曲變形撓度撓度v, y截面形心的豎向位移截面形心的豎向位移轉(zhuǎn)角轉(zhuǎn)角 截面繞中性軸轉(zhuǎn)過的角度截面繞中性軸轉(zhuǎn)過的角度v6-1 概概 述述撓度曲撓度曲線線撓度曲線方程撓度曲線方程 v ( x )轉(zhuǎn)角
11、方程轉(zhuǎn)角方程 ( x )dtan( )dvv xxddvx1zMEI2 3 21(1)vv)(xv ZIExMxv)()( 撓曲線撓曲線基本微分方程基本微分方程( )( )dZM xvxxCEI( )( )d dZM xv xx xEICxD( )( )dZEI vxM xxC( )( )d dZEI v xM xx xCxD邊界條件邊界條件v撓度曲線撓度曲線已知的撓度和轉(zhuǎn)角已知的撓度和轉(zhuǎn)角解:解:lFbRAlFaRBxlFbxRxMA)(1)0(ax)()(2axFxRxMA)(axFxlFb)(lxa1212CxlFbvEIZ11316DxCxlFbvEIZRARB332)(66axFxl
12、FbvEIZ22DxC2222)(22CaxFxlFbvEIZ021 DD)(62221bllFbCC0:,0:021vlxvx2121,:vvvvaxabFl邊界條件邊界條件連續(xù)條件連續(xù)條件ba極值點(diǎn)在極值點(diǎn)在 AC 段段)(39)(322maxlEIblFbvZba 極值點(diǎn)在極值點(diǎn)在 C 點(diǎn)點(diǎn))(483maxZEIFlv0bFb 形成一個(gè)力偶形成一個(gè)力偶 M極值點(diǎn)極值點(diǎn)llx577.0303220blx)(392maxZEIMlv中點(diǎn)撓度中點(diǎn)撓度ZEIMllvv16)221 (中相對(duì)誤差相對(duì)誤差中64. 2maxmaxvvvaFv1v2ABCbaABbFM例例6-3 求梁指定截面求梁指定截
13、面 的撓度和轉(zhuǎn)角。的撓度和轉(zhuǎn)角。(1)Acv,解:解:)(245385)2(5441ZZCEIqaEIaqv)(648)2(432ZZCEIqaEIaFv)(83421ZCCCEIqavvv)(324)2(331ZZAEIqaEIaq)(216)2(332ZZAEIqaEIaqaaF = q aABqCqaaABCaaFABC)(65321ZAAAEIqa例例 6.4 求圖示懸臂梁的求圖示懸臂梁的 vC解一:增減載荷解一:增減載荷)(8)2(41EIaqvCavvBBC222)(842EIqavB)(632EIqaB)(2474EIqa21CCCvvv21CCCvvv)(24412472444
14、EIqaEIqaEIqaABCaaqABCqABCqBqACvB2 B2解二:逐段剛化法解二:逐段剛化法先假設(shè)先假設(shè) BC 段剛性,只有段剛性,只有 AB 段變形段變形avvBBC111)(127234231EIqaEIaMEIaQvBBB)(12194111EIqaavvBBC)(23221EIqaEIaMEIaQBBB再考慮再考慮 BC 段的變形段的變形 ( AB 段剛性段剛性 )(842EIqavC)(2441421EIqavvvCCCABCaaqBACqvC 1aaAa B1vB1QBMBvC2ACBqvC1邊界條件邊界條件連續(xù)條件連續(xù)條件撓度撓度v, y轉(zhuǎn)角轉(zhuǎn)角 彎曲彎曲變形變形的度
15、量的度量曲率曲率1/ 1zMEIZIExMxv)()( vv直接直接積分法積分法( )( )dZEI vxM xxC( )( )d dZEI v xM xx xCxD查表查表疊加法疊加法直接疊加直接疊加增減載荷增減載荷逐段剛化逐段剛化載荷代換載荷代換結(jié)構(gòu)代換結(jié)構(gòu)代換例例6-5 求圖示簡支梁的求圖示簡支梁的 vC()/2CABvvv解:aaABqCABEI2EICaaaaABC2ql2qlvC2qlACABq/2C0,ACCAvvv解:ACvvCABqC4qa34ql121CCCCvvvv(B)(C)(A)(D)頂針頂針例例6-6 求下列超靜定梁的支反力求下列超靜定梁的支反力解:解除多余約束代之以約束反力解:解除多余約束代之以約束反力平衡方程平衡方程qlRRAC22約束條件約束條件021CCCvvv)(245384)2(5441EIqlEIlqvC物理方程物理方程)(648)2(332EIlREIlRvCCC補(bǔ)充方程補(bǔ)充方程0624534EIlREIqlC解得解得)(45 qlRC)(83qlRRBAqABEICllRARBRCCqll1Cv2CvRCll解:解除多余約束代之以約束反力解:解除多余約束代之以約束反力約束條件約束條件0DvCDClvABCaaFAElFlCD)()(qvFvvCCCEIaFFvC3)2()
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年金融咨詢班組分包合同
- 2024中心衛(wèi)生院臨時(shí)工醫(yī)院藥房藥品管理協(xié)議3篇
- 2024標(biāo)準(zhǔn)化生態(tài)建設(shè)工程施工合同書
- 2024年跨境電商服務(wù)平臺(tái)合作合同
- 2024植物租賃應(yīng)用于會(huì)議室合同
- 專業(yè)辦公用品批量供應(yīng)協(xié)議格式版B版
- 2025年度國際物流運(yùn)輸服務(wù)合同書2篇
- 2025年度餐飲配送企業(yè)物流配送網(wǎng)絡(luò)優(yōu)化與調(diào)整合同3篇
- 2024年貨車掛靠車輛調(diào)度合同
- 餐廳經(jīng)營知識(shí)培訓(xùn)課件
- 光伏安裝施工合同范本
- 北京郵電大學(xué)《數(shù)學(xué)物理方法概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024-2025學(xué)年無錫市數(shù)學(xué)三年級(jí)第一學(xué)期期末質(zhì)量檢測試題含解析
- 2024年簡易別墅買賣合同樣本
- 2025中考數(shù)學(xué)考點(diǎn)題型歸納(幾何證明大題)
- 人教版(2024)數(shù)學(xué)七年級(jí)上冊(cè)期末測試卷(含答案)
- 醫(yī)院護(hù)理10s管理
- 2024-2025學(xué)年度第一學(xué)期二年級(jí)數(shù)學(xué)寒假作業(yè)有答案(共20天)
- 2024年質(zhì)量管理考核辦法及實(shí)施細(xì)則(3篇)
- 寵物店員工管理制度(4篇)
- 2024年學(xué)校意識(shí)形態(tài)工作總結(jié)(3篇)
評(píng)論
0/150
提交評(píng)論