版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 立體幾何中的外接內(nèi)切球如果一個(gè)多面體的各個(gè)頂點(diǎn)都在同一個(gè)球面上,那么稱這個(gè)多面體是球的內(nèi)接多面體,這個(gè)球稱為多面體的外接球。有關(guān)多面體外接球的問(wèn)題,是立體幾何的一個(gè)重點(diǎn),也是高考考查的一個(gè)熱點(diǎn)??疾閷W(xué)生的空間想象能力及歸納能力。研究多面體的外接球問(wèn)題,既要運(yùn)用多面體的知識(shí),又要運(yùn)用球的知識(shí)。并且還要特別注意多面體的有關(guān)幾何元素與球的半徑之間的關(guān)系,而多面體外接球半徑的求法在解題中往往會(huì)起到至關(guān)重要的作業(yè)。本專題主要討論補(bǔ)形法和軸截面法。補(bǔ)形法:情況一:假設(shè)一個(gè)三棱錐的三條側(cè)棱兩兩垂直,且其長(zhǎng)度分別為,那么就可以將這個(gè)三棱錐補(bǔ)成一個(gè)長(zhǎng)方體,于是長(zhǎng)方體的體對(duì)角線的長(zhǎng)就是該三棱錐的外接球的直徑.設(shè)
2、其外接球的半徑為,那么有.情況二:假設(shè)出現(xiàn)對(duì)邊相等,一般也是構(gòu)造長(zhǎng)方體,再利用。此類題重點(diǎn)要找出三邊。例1:點(diǎn)A、B、C、D在同一個(gè)球面上,那么外接球的體積是_ 。解析:如圖,易得,那么此球內(nèi)接長(zhǎng)方體三條棱長(zhǎng)為AB、BC、CDCD的對(duì)邊與CD等長(zhǎng),從而球外接圓的直徑為,即.例2.如圖,球O點(diǎn)面上四點(diǎn)A、B、C、D,DA平面ABC,ABBC,DA=AB=BC=,那么球O的體積等于_。解析:本小題主要考查球的內(nèi)接幾何體體積計(jì)算問(wèn)題。其關(guān)鍵是找出球心,從而確定球的半徑。由題意,三角形DAC,三角形DBC都是直角三角形,且有公共斜邊。所以DC邊的中點(diǎn)就是球心到D、A、C、B四點(diǎn)距離相等,所以球的半徑就
3、是線段DC長(zhǎng)度的一半。例3.在正三棱錐中,、分別是棱、的中點(diǎn),且,假設(shè)側(cè)棱,那么正三棱錐外接球的外表積是 ABCD解析:正三棱錐對(duì)棱互相垂直,即,又SBMN,且, ,從而. ,以為頂點(diǎn),將三棱錐補(bǔ)成一個(gè)正方體,故球的直徑,即,。例4.在四面體中,那么四面體的外接球的外表積為_.【答案】解析:構(gòu)造一個(gè)長(zhǎng)方體,使得它的三條面對(duì)角線分別為4、5、6,設(shè)長(zhǎng)方體的三條邊分別為,那么,而長(zhǎng)方體的外接球就是四面體的外接球,所以 練習(xí)題:1.一個(gè)三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩互相垂直,且長(zhǎng)度分別為1、3,那么這個(gè)三棱錐的外接球的外表積為A、16 B、32 C、36 D、64答案:A2.在三棱錐
4、A-BCD中,側(cè)棱AB、AC、AD兩兩垂直,ABC、ACD、ADB的面積分別為,那么三棱錐A-BCD的外接球的體積為3.三棱錐P-ABC中,PA,PB,PC兩兩垂直,如果此三棱錐外接球的外表積為9,那么PAPB+PAPC+PBPC的最大值為A. B. C.9 D.18 軸截面法:我們選擇最正確角度找出含有找出含有正棱錐特征元素的外接球的一個(gè)軸截面面圓,于是該圓的半徑就是所求的半徑,把立體幾何問(wèn)題轉(zhuǎn)化為平面幾何問(wèn)題來(lái)研究。這種等價(jià)轉(zhuǎn)化的思想是我們應(yīng)該研究的重點(diǎn)。例1.四面體正四棱錐SABCD的底面邊長(zhǎng)和各側(cè)棱長(zhǎng)都為,點(diǎn)S、A、B、C、D都在同一個(gè)球面上,那么該球的體積為_審題導(dǎo)引如下圖,根據(jù)對(duì)稱
5、性,只要在四棱錐的高線SE上找到一個(gè)點(diǎn)O使得OAOS,那么四棱錐的五個(gè)頂點(diǎn)就在同一個(gè)球面上標(biāo)準(zhǔn)解答如下圖,在RtSEA中,SA,AE1,故SE1.設(shè)球的半徑為r,那么OAOSr,OE1r.在RtOAE中,r2(1r)21,解得r1,即點(diǎn)O即為球心,故這個(gè)球的體積是.例2.四面體在同一球面上,且,當(dāng)四面體的體積最大時(shí)且為,求球的外表積 解析:,是直角三角形, 的外接圓的圓心是邊AC的中點(diǎn)O1,如下圖,假設(shè)使四面體ABCD體積的最大值只需使點(diǎn)D到平面ABC的距離最大,又平面ABC,所以點(diǎn)D是直線與球的交點(diǎn) ,設(shè)球的半徑為R,那么由體積公式有: ,在中,解得: ,應(yīng)選C 1.球O點(diǎn)面上四點(diǎn)A、B、C
6、、D,DA平面ABC,ABBC,DA=AB=BC=,那么球O的體積等于_2.四棱錐V-ABCD的頂點(diǎn)都在同一球面上,底面ABCD為矩形,ACBD=G,VG平面ABCD,AB=,那么該球的體積為 內(nèi)切圓:等體積法例1設(shè)棱錐的底面是正方形,且,如果的面積為1,試求能夠放入這個(gè)棱錐的最大球的半徑.解: 平面,圖2由此,面面.記是的中點(diǎn),從而.平面,設(shè)球是與平面、平面、平面都相切的球.如圖2,得截面圖及內(nèi)切圓不妨設(shè)平面,于是是的內(nèi)心.設(shè)球的半徑為,那么,設(shè),.,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.當(dāng)時(shí),滿足條件的球最大半徑為. 練習(xí):1.一個(gè)正四面體內(nèi)切球的外表積為,求正四面體的棱長(zhǎng)。答案為:2.在底
7、面半徑為3,高為4+2的圓柱形有蓋容器內(nèi),放入一個(gè)半徑為3的大球后,再放入與球面、圓柱側(cè)面及上底面均相切的小球,那么放入小球的個(gè)數(shù)最多為A、4 B、5 C、6 D、7作業(yè):1三棱柱ABCA1B1C1的6個(gè)頂點(diǎn)都在球O的球面上,假設(shè)AB=3,AC=4,ABAC,AA1=12,那么球O的半徑為ABCD2將一個(gè)氣球的半徑擴(kuò)大1倍,它的體積擴(kuò)大到原來(lái)的A 2倍B4倍C8倍D16倍3用與球心距離為1的平面去截球,所得的截面面積為,那么球的體積為A BCD4球的外表積與它的內(nèi)接正方體的全面積之比為A B C D15將棱長(zhǎng)為2的正方體木塊削成一個(gè)體積最大的球,那么這個(gè)球的外表積為A 2B 4C 8D166三
8、棱柱ABCA1B1C1的6個(gè)頂點(diǎn)都在球O的球面上,假設(shè)AB=3,AC=4,ABAC,AA1=12,那么球O的半徑為ABCD7三棱錐PABC中,PA、PB、PC兩兩垂直,PAPB2PC2a,且三棱錐外接球的外表積為S9,那么實(shí)數(shù)a的值為()A1 B2C. D.8半徑為5的球面上有三個(gè)點(diǎn)A,B,C,假設(shè)AB6,BC8,AC10,經(jīng)過(guò)這3個(gè)點(diǎn)作截面,那么球心到截面的距離為()A4 B4 C5 D99三棱錐的三視圖如下圖,那么它的外接球外表積為()A16 B8 C4 D210三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,ABC是邊長(zhǎng)為1的正三角形,SC為球O的直徑,且SC=2,那么此棱錐的體積為 A B
9、 C D二、填空題 :1如圖,球O的面上四點(diǎn)A、B、C、D,DA平面ABC,ABBC,DA=AB=BC=,那么球O的體積等于 2點(diǎn)A、B、C在球心為O的球面上,ABC的內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,且a2b2c2bc,a,球心O到截面ABC的距離為,那么該球的外表積為_3過(guò)正四面體外接球球心的平面截正四面體所得截面如下圖,圖中三角形面積為2,那么正四面體棱長(zhǎng)為_4給出以下命題:一個(gè)球與棱長(zhǎng)為的正方體的所有棱都相切,那么此球的體積為;假設(shè) ()2,那么實(shí)數(shù)a1;函數(shù)f(x)ln(x21),那么方程f(x)0在(1,2)內(nèi)必有實(shí)根;圓(x2)2y22外的點(diǎn)M對(duì)該圓的視角為90°時(shí),那么點(diǎn)M的軌跡方程是(x2)2y24.其中正確的命題序號(hào)是_5過(guò)半徑為2的球O外表上一點(diǎn)A,作球O的截面,假設(shè)OA與該截面所成的角為30°,那么該截面的面積為_6正四棱柱ABCDA1B1C1D1的底面邊長(zhǎng)AB6,側(cè)棱長(zhǎng)AA12,它的外接球的球心為O,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是球O的球面上任意一點(diǎn),有以下判斷:(1)PE長(zhǎng)的最大值是9;(2)三棱錐PEBC體積的最大值是;(3)存在過(guò)點(diǎn)E的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)學(xué)解題技巧與方法
- 2025版深圳租賃汽車租賃期限及責(zé)任劃分合同2篇
- 2025版消防系統(tǒng)設(shè)計(jì)與施工合同模板3篇
- 應(yīng)急預(yù)案的執(zhí)行和改進(jìn)
- 電力水利行業(yè)技術(shù)升級(jí)建議
- 男科護(hù)理工作總結(jié)
- 金融行業(yè)薪酬福利設(shè)計(jì)總結(jié)
- 二零二五年度個(gè)人之間生活費(fèi)用借款合同2篇
- 小組合作學(xué)習(xí)在考試中的應(yīng)用
- 二零二五年度公共設(shè)施防水保養(yǎng)合同4篇
- Unit 6 Beautiful landscapes Integration說(shuō)課稿 - 2024-2025學(xué)年譯林版英語(yǔ)七年級(jí)下冊(cè)
- 測(cè)繪學(xué)基礎(chǔ)知識(shí)單選題100道及答案解析
- 2024年國(guó)家焊工職業(yè)技能理論考試題庫(kù)(含答案)
- 特魯索綜合征
- 2024年山東省泰安市高考語(yǔ)文一模試卷
- TCL任職資格體系資料HR
- 《中國(guó)古代寓言》導(dǎo)讀(課件)2023-2024學(xué)年統(tǒng)編版語(yǔ)文三年級(jí)下冊(cè)
- 五年級(jí)上冊(cè)計(jì)算題大全1000題帶答案
- 工程建設(shè)行業(yè)標(biāo)準(zhǔn)內(nèi)置保溫現(xiàn)澆混凝土復(fù)合剪力墻技術(shù)規(guī)程
- 屋面細(xì)石混凝土保護(hù)層施工方案及方法
- 110kv各類型變壓器的計(jì)算單
評(píng)論
0/150
提交評(píng)論