專題含絕對(duì)值不等式的解法含答案_第1頁(yè)
專題含絕對(duì)值不等式的解法含答案_第2頁(yè)
專題含絕對(duì)值不等式的解法含答案_第3頁(yè)
專題含絕對(duì)值不等式的解法含答案_第4頁(yè)
專題含絕對(duì)值不等式的解法含答案_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第三講含絕對(duì)值不等式與一元二次不等式、知識(shí)點(diǎn)回顧1、絕對(duì)值的意義:(其幾何意義是數(shù)軸的點(diǎn)A(a)離開(kāi)原點(diǎn)的距離OAa)a,a0a0,a0a,a02、含有絕對(duì)值不等式的解法:(解絕對(duì)值不等式的關(guān)鍵在于去掉絕對(duì)值的符號(hào))(1)定義法;(2)零點(diǎn)分段法:通常適用于含有兩個(gè)及兩個(gè)以上的絕對(duì)值符號(hào)的不等式;fxgx);xa或xacc0axbcm£axgxfxgx或fxfxa(3)平方法:通常適用于兩端均為非負(fù)實(shí)數(shù)時(shí)(比如(4)圖象法或數(shù)形結(jié)合法;(5)不等式同解變形原理:即xaa0axaxaa0axbcc0caxbcaxbfxgxgxfxgxfxafxbba0afxb或b3、不等式的解集都要用

2、集合形式表示,不要使用不等式的形式。4、二次函數(shù)、一元二次方程、一元兩次不等式的聯(lián)系。(見(jiàn)P8)5、利用二次函數(shù)圖象的直觀性來(lái)研究一元二次方程根的性質(zhì)和一元二次不等式解集及變化,以及含字母的有關(guān)問(wèn)題的討論,滲透數(shù)形結(jié)合思想。6、解一元二次不等式的步驟:(1)將不等式化為標(biāo)準(zhǔn)形式ax2bxc00或ax2bxc00(2)解方程ax2bxc0據(jù)二次函數(shù)yax2bxc的圖象寫(xiě)出二次不等式的解集?;窘夥ㄅc思想解含絕對(duì)值的不等式的基本思想是等價(jià)轉(zhuǎn)化,即采用正確的方法去掉絕對(duì)值符號(hào)轉(zhuǎn)化為不含絕對(duì)值的不等式來(lái)解,常用的方法有公式法、定義法、平方法。(一)、公式法:即利用xa與xa的解集求解。主要知識(shí):1、絕

3、對(duì)值的幾何意義:x是指數(shù)軸上點(diǎn)x到原點(diǎn)的距離;Xix2是指數(shù)軸上X,x2兩點(diǎn)間的距離.2、xa與xa型的不等式的解法。的解集是xxa,或xaa的解集是xaxa;a的解集是xxRa的解集是;當(dāng)a0時(shí),不等式x不等式x當(dāng)a0時(shí),不等式x不等式x3.axbc與axc型的不等式的解法。把a(bǔ)xb看作一個(gè)整體時(shí),可化為a型的不等式來(lái)求解。當(dāng)c0時(shí),不等式axbc的解集是xaxbc,或axbcc的解集是xcaxbc;c的解集是xxRc的解集是;例1解不等式x23分析:這類題可直接利用上面的公式求解,這種解法還運(yùn)用了整體思想,如把“x2看著一個(gè)整體。答案為x1x5。(解略)(3)2x35(2)x29x3一一一

4、一,一,一一,一2(1)解:原不等式等價(jià)于23x0,所以不等式解集為xx-3x290X290(2)解:(1)法一:原不等式j(luò)90或x290x29x39x2x32x33x城x2x33x43,由x29x3解得非曲直由解得x3或3x4,由解得.,原不等式的解集是x2x4或x法二:原等式等價(jià)于(x3)x29xM2x4.,原不等式的解集是x2x4或x法三:設(shè)y1x29,y2x3(x3x14,x23,x32,在同一坐標(biāo)系下作出它們的圖象,由圖得使ya(a0).y的x的范圍是例2。解不等式|上|上x(chóng)2x2分析:由絕對(duì)值的意義知,aaa>0,aaa00。解:原不等式等價(jià)于一x-<0x(x+2)&l

5、t;0-2<x<0ox2練習(xí):23x23x(1)解:原不等式等價(jià)于23x0,所以不等式解集為xx23(三)、平方法:解f(x)g(x)型不等式。例3、解不等式|x12x3。解:原不等式(x1)2(2x3)2(2x3)2(x1)204(2x-3+x-1)(2x-3-x+1)<0(3x-4)(x-2)<0-x20說(shuō)明:求解中以平方后移項(xiàng)再用平方差公式分解因式為宜。二、分類討論法:即通過(guò)合理分類去絕對(duì)值后再求解。例4解不等式x1x25。分析:由x110"x20,得x1和x2。2和1把實(shí)數(shù)集合分成三個(gè)區(qū)間,即x2,2x1,x1,按這三個(gè)區(qū)間可去絕對(duì)值,故可按這三個(gè)區(qū)間

6、討論。解:當(dāng)x<-2時(shí),得x2(x1)(x2)5當(dāng)-20x01時(shí),得2x1,(x1)(x2)5當(dāng)x1時(shí),得x(x1,1)(x2)5.解得:3x2解得:2x1解得:1x2綜上,原不等式的解集為x3x2說(shuō)明:(1)原不等式的解集應(yīng)為各種情況的并集(2)這種解法又叫“零點(diǎn)分區(qū)間法”,即通過(guò)令每一個(gè)絕對(duì)值為零求得零點(diǎn),求解應(yīng)注意邊界值。、幾何法:即轉(zhuǎn)化為幾何知識(shí)求解例5對(duì)任何實(shí)數(shù)x,若不等式x1|x2k包成立,則實(shí)數(shù)k的取值范圍為()(A)k<3(B)k<-3(C)k<3(D)k<-3分析:設(shè)y|x1|x2,則原式對(duì)任意實(shí)數(shù)x包成立的充要條件是kymin,于是題轉(zhuǎn)化為求y

7、的最小值。QOOCOx-102解:x1、x2的幾何意義分別為數(shù)軸上點(diǎn)x到-1和2的距離x1-x2的幾何意義為數(shù)軸上點(diǎn)x到-1與2的距離之差,如圖可得其最小值為-3,故選(B)。(3)分析:關(guān)鍵是去掉絕對(duì)值方法1:零點(diǎn)分段討論法(利用絕對(duì)值的代數(shù)定義)當(dāng)x1時(shí),x30,x10.(x3)(x1)1.4<1x當(dāng)1x3時(shí)1 .,1(x3)(x1)1x-,.-x|-x32 2當(dāng)x3時(shí)(x3)(x1)1-4<1xR.x|x31綜上,原不等式的解集為x|x-2也可以這樣寫(xiě):解:原不等式等價(jià)于Dx12(x3)(x1)或11x3(x3)(x1)1或x3(x3)(x1)解的解集為小,的解集為x|原不等

8、式的解集為x|x>1Vx<3,的解集為x|x3,2.原不等式的解集為x|x>12方法2:數(shù)形結(jié)合從形的方面考慮,不等式|x-3|-|x+1|<1表示數(shù)軸上到3和-1兩點(diǎn)的距離之差小于1的點(diǎn).-1O123x解:設(shè)M則它到A、即fx由圖象可得:當(dāng)x2日f(shuō)xmin四、典型題型1、解關(guān)于x的不等式x變式:(1)若x2|x1a恒成立,求實(shí)數(shù)a的取值范圍。解:由幾何意義可知,x2x1的最小值為1,所以實(shí)數(shù)a的取值范圍為,1。(2)數(shù)軸上有三個(gè)點(diǎn)A、B、C,坐標(biāo)分別為-1,2,5,在數(shù)軸上找一點(diǎn)M,使它到A、B、C三點(diǎn)的距離之和最小。x,0)B、C三點(diǎn)的距離之和fxx1x2x53x6

9、,x5x4,2x5x8,1x23x6,x13x810810,1或x2x32)(1,3)解:原不等式等價(jià)于10x23x即x:3x810xx3x8106原不等式的解集為(6,一1八2、解關(guān)于x的不等式23x257一x一442x32x30解:原不等式等價(jià)于c012x3-22)23、解關(guān)于x的不等式2x1x2解:原不等式可化為(2x1)2(x.(2x1)2(x2)20即(x3)(3x1)01解得:1x331mR)因2x10,故原不等式的解集是空原不等式的解集為(1,3)34、解關(guān)于x的不等式2x12m1(1解:(1)當(dāng)2m10時(shí),即m1,2集。,、,一一1當(dāng)2m10時(shí),即m-,原不等式等價(jià)于2(2m1

10、)2x12m1解得:1mxm,1.一1綜上,當(dāng)m-時(shí),原不等式解集為空集;當(dāng)m-時(shí),不等式解集為22x1mxm5、解關(guān)于x的不等式2x1xx3解:當(dāng)x3時(shí),得x3(2x1)1(x3)1,無(wú)解1當(dāng)3xL得3x萬(wàn),解得:3x-2(2x1)xx31421 1.一1當(dāng)x1時(shí),得x2,解得:x12 23 2x1xx312.、一.一31綜上所述,原不等式的解集為(3,1)426、解關(guān)于x的不等式x1x25(答案:(,32,)解:五、鞏固練習(xí)1、設(shè)函數(shù)f(x)2x1x3,則£(2)=;若f(x)2,則x的取值范圍是.o12、已知aR,若關(guān)于x的萬(wàn)程x2xa1a0有實(shí)根,則a的取值范圍4是.x13、

11、不等式1的實(shí)數(shù)解為.x2|4、解下列不等式4x32x1;|x2|x1|;|2x1|x2|4;(4)4|2x3|7;|x142;x2aa(aR)5、若不等式ax26的解集為1,2,則實(shí)數(shù)a等于()A.8B.2C.4D.8x0的解集是(A.x0x1B.xx7、1對(duì)任意實(shí)數(shù)x,|x2對(duì)任意實(shí)數(shù)x,|x1C.x1x1D.xx1且x11|x2|a恒成立,則a的取值范圍是1|x3|a恒成立,則a的取值范圍是.3若關(guān)于x的不等式|x4|x3|a的解集不是空集,則a的取值范圍是8、不等式x2103x的解集為(A.x|2x曬B.x|2x5C.x|2xD.xh/10x59、解不等式:10、方程x23xx2.-4-

12、的解集為x23x的解集是12、不等式x(12x)0的解集是A.(,2)11、不等式351B.(,0)丐)c.(2.D.嗎)2xA.,2U7,12、已知不等式x29的解集是B.1,4a(a0)的解集為C.13、解關(guān)于x的不等式:解關(guān)于x的不等式14、不等式1|x1|3的解集為().A.(0,2)15、設(shè)集合AB.(2,0)1J(2,4)2,1U4,7R|1mx1D.2,1U4,7,求a2c的值3;2x1a(aR)A.R16、不等式2x17、設(shè)全集UB.xxR,x01x1的解集是R,解關(guān)于x的不等式:C.(yyC.1、63、(,2)(2,|)4,0)x2,1D.(x24,2)U(0,2),則CRaPib等于D.(參考答案)、0,41,、一4、(1)xx或x23,、1(2)XX-2(3)XX或X12-1,、7X2X一或一X522X5X1或3X7當(dāng)a0時(shí),x<2axV2a當(dāng)a0時(shí),不等式的解集為7、a3;C1-5c一a或x10、x2215

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論