




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、 經(jīng)過線段經(jīng)過線段中點中點并且并且垂直垂直于這條線段的直線,叫做這于這條線段的直線,叫做這條線段的條線段的垂直平分線垂直平分線。垂直平分線垂直平分線: :圖形軸對稱的性質(zhì)圖形軸對稱的性質(zhì): : 如果兩個圖形關(guān)于某條直線對稱,那么如果兩個圖形關(guān)于某條直線對稱,那么對稱軸對稱軸是任是任何一對何一對對應(yīng)點所連線段對應(yīng)點所連線段的垂直平分線。的垂直平分線。 類似地,軸對稱圖形的類似地,軸對稱圖形的對稱軸對稱軸,是任何一對,是任何一對對應(yīng)點對應(yīng)點所連線段所連線段的垂直平分線。的垂直平分線。線段線段垂直平分線垂直平分線上的上的點點與這條線段兩個與這條線段兩個端點端點的距離相等。的距離相等。線段垂直平分線的
2、性質(zhì)線段垂直平分線的性質(zhì): :證明證明:直線直線MNAB于于C且且AC=CB,點點P在在MN上上.題設(shè):題設(shè):ABPMNC線段線段垂直平分線垂直平分線上的上的點點與這條線段兩個與這條線段兩個端點端點的距離相等。的距離相等。一、線段垂直平分線的性質(zhì)一、線段垂直平分線的性質(zhì): :結(jié)論:結(jié)論:PA=PB求證:求證:已知:已知:直線直線MNABMNAB于于C C,AC=CBAC=CB,點,點P P在在MNMN上上PA=PBPA=PB一、線段垂直平分線的性質(zhì)一、線段垂直平分線的性質(zhì): :數(shù)學表達:數(shù)學表達:直線直線MNMN垂直平分垂直平分ABAB,點,點P P在在MNMN上上PA=PBPA=PBABPM
3、NC也可以說:也可以說:P P是線段是線段ABAB垂直平分線上的點,垂直平分線上的點,PA=PB PA=PB 線段垂直平分線上的點與這條線段兩個端點的距離相等線段垂直平分線上的點與這條線段兩個端點的距離相等還可以說:還可以說:依據(jù)是:依據(jù)是:證明證明: 線段線段垂直平分線垂直平分線上的上的點點與這條線段兩個與這條線段兩個端點端點的距離相等。的距離相等。線段的線段的垂直平分線垂直平分線可以看作是和線段兩端點距離相等的所有可以看作是和線段兩端點距離相等的所有點的點的集合集合。 線段的垂直平分線的集合定義:線段的垂直平分線的集合定義:已知:如圖,已知:如圖,ABCABC中,中,AC=16cmAC=1
4、6cm,DEDE為為ABAB的垂直平分線,的垂直平分線, BCEBCE的周長為的周長為26cm26cm,求,求BCBC的長。的長。做一做做一做解解:DEDE是是ABAB的垂直平分線的垂直平分線EA=EB(EA=EB(線段垂直平分線上的點與這條線線段垂直平分線上的點與這條線段的兩個端點的距離相等)段的兩個端點的距離相等) C CBCEBCE=CE+EB+BC=CE+EB+BC又又AC=CE+EA=CE+EBAC=CE+EA=CE+EB BC=C BC=CBCE - (CE+EB) =C =CBCEBCE-AC-AC =10cm =10cm解解:做一做做一做已知:如圖,已知:如圖,P P為為MON
5、MON內(nèi)一點,內(nèi)一點,OMPAOMPA于于E E,ONPBONPB于于F F,EA=EPEA=EP,F(xiàn)B=FPFB=FP,若,若ABAB長為長為15cm15cm,求,求PCDPCD的周長。的周長。OMPAOMPA于于E E,EA=EPEA=EP,點,點C C在在OMOM上,上,CA=CP(CA=CP(線段垂直平分線上的點與這條線線段垂直平分線上的點與這條線段的兩個端點的距離相等)段的兩個端點的距離相等)同理,同理,ONPBONPB于于F F,F(xiàn)B=FPFB=FP,點,點D D在在ONON上,上,DB=DPDB=DP C CPCDPCD=CP+CD+DP=CA+CD+DB=AB=CP+CD+DP
6、=CA+CD+DB=AB又又AB=15cmAB=15cm C CPCDPCD=15cm=15cm二、線段垂直平分線的判定二、線段垂直平分線的判定: :與一條線段兩個與一條線段兩個端點端點距離相等的距離相等的點點,在這條線段的,在這條線段的垂直垂直平分線平分線上。上。證明證明: :題設(shè)題設(shè): : CA=CBCA=CB結(jié)論結(jié)論: : C C在在ABAB的垂直平分線上的垂直平分線上已知已知: :求證求證: :證明證明: : 過過C作作COAB于于O 則則 AOC= BOC=90 在在 RtAOC和和Rt BOC中,中, AC=BC OC=OC RtAOC Rt BOC(HL) OA=OB 又又COA
7、B于于O C在在AB的垂直平分線上的垂直平分線上如何用數(shù)學語言表達呢?如何用數(shù)學語言表達呢?已知已知: :如圖如圖,AC=AD,AC=AD,BC=BDBC=BD,求證:求證:ABAB垂直平分垂直平分CDCD。AC=ADAC=AD點點A A在在CDCD的垂直平分線上(的垂直平分線上( )證明證明: 與一條線段兩與一條線段兩個端點距離相等的點,在這條線段的垂直個端點距離相等的點,在這條線段的垂直平分線上平分線上同理,同理,BC=BDBC=BD點點B B在在CDCD的垂直平分線上的垂直平分線上ABAB垂直平分垂直平分CDCD(兩點確定一條直線)(兩點確定一條直線)如圖,如圖,ABCABC中,邊中,邊
8、ABAB、BCBC的垂直平的垂直平分線交于點分線交于點P P。結(jié)論:三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等。(2 2)點)點P P是否也在邊是否也在邊ACAC的垂直平分線的垂直平分線上呢?由此你能得出什么結(jié)論?上呢?由此你能得出什么結(jié)論?(1 1)求證:)求證:PA=PB=PCPA=PB=PC。證明證明:點點P P在在ABAB的垂直平分線上的垂直平分線上PA=PBPA=PB(線段垂直平分線上的點與線段垂直平分線上的點與這條線段的兩個端點的距離相等這條線段的兩個端點的距離相等)同理,同理,點點P P在在BCBC的垂直平分線上的垂直平分線上PB=PCPB=PCPA=PB=PCPA=PB=PCPA=PCPA=PC點點P P在在ACAC的垂直平分線上(的垂直平分線上(與一條線段與一條線段兩個端點距離相等的點,在這條線段的兩個端點距離相等的點,在這條線段的垂直平分線上)垂直平分線上)解解:與一條線段兩個與一條線段兩個端點端點距離相等的距離相等的點點,在這條線段的,在這條線段的垂直平分垂直平分線線上。上。一、線段垂直平分線的性質(zhì)定理:一、線段垂直平分線的性質(zhì)定理:PA=PBPA=PB點點P P在線段在線段ABAB的垂直的垂直平分線上平分線上與一條線段兩個端點距離相等的與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上點,在這條線段的垂直平分線上線段
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025門座式起重機租賃合同
- 2025育兒嫂服務(wù)合同范本
- 2025工程咨詢服務(wù)合同變更要求書新
- 2025設(shè)備租賃合同書樣本
- 2025《構(gòu)建城市軌道交通合同》
- 2025二手商品買賣合同范本
- 2025冷卻系統(tǒng)維護保養(yǎng)合同書
- 2025房地產(chǎn)抵押借款合同
- 2025合同管理考點:合同違約責任的設(shè)計要點
- 電臺項目可行性研究報告
- 2025年度事業(yè)單位招聘考試公共基礎(chǔ)知識仿真模擬試卷及答案(共五套)
- 2025年廣西壯族自治區(qū)南寧市中考一模生物試題(含答案)
- SQLSERVER如何配置內(nèi)存提高性能配置方案
- 電視臺影視拍攝合同協(xié)議
- 裝配式建筑技術(shù)創(chuàng)新與可持續(xù)發(fā)展-全面剖析
- 裝飾公司結(jié)算管理制度
- 實習生頂崗實習安全教育
- 網(wǎng)絡(luò)災難恢復計劃試題及答案
- 物業(yè)五一節(jié)前安全教育
評論
0/150
提交評論