第六章不等式 - 主講教師薛雁平(大連一中_第1頁
第六章不等式 - 主講教師薛雁平(大連一中_第2頁
第六章不等式 - 主講教師薛雁平(大連一中_第3頁
第六章不等式 - 主講教師薛雁平(大連一中_第4頁
第六章不等式 - 主講教師薛雁平(大連一中_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、主講教師:薛雁平(大連一中 高級教師)一、學(xué)習(xí)內(nèi)容:第六章不等式.本章內(nèi)容分為五部分:1 、不等式的性質(zhì)2 、算術(shù)平均數(shù)和幾何平均數(shù)3 、不等式的證明4 、不等式的解法5、含絕對值的不等式1、理解不等式的性質(zhì)及其證明2、掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會簡單的應(yīng)用 3、掌握用分析法、綜合法、比較法證明簡單的不等式4、掌握一元二次不等式,一元二次不等式組、含絕對值不等式、簡單高次不等式和分式不等式的解法5、理解不等式|a|-|b|a+b|a|+|b|三、學(xué)習(xí)指導(dǎo): 本章內(nèi)容中不等式的證明和不等式的解法是重點(diǎn),掌握不等式的性質(zhì)是學(xué)好本章的關(guān)鍵,不等式的證明是難點(diǎn)。不等式的性

2、質(zhì):nnnnbaNnbabaNnbabdacdcbabcaccbabcaccbadbcadcbacbcaRcbacacbba11*,0,00,0.0,0,二、不等式的性質(zhì):bababababababa0;0;0, 有:對于任意的實(shí)數(shù)一、不等式的基本性質(zhì)四、典型例題講評例1:已知ab0,的大小與試比較33322,baba332222222222223332263362233332222330)(2)233(0000bababababaabbababababababababaabbaba時(shí)當(dāng),且時(shí)當(dāng)解:(一)不等式性質(zhì)的應(yīng)用例2: ab0,c0,d0 判斷 dbdacacbbaab,之間的大小順序

3、xaxbxf)(解:令xaabxa)(xaab1cacbabcffcxfoab)()0(00)()上為增函數(shù),在()上為減函數(shù),在(同理0)(xbxaxfabcacbdbdababadbda(二)算術(shù)平均數(shù)和幾何平均數(shù)的定理的應(yīng)用 abba222abba2a,b是實(shí)數(shù) 時(shí)a,b是正數(shù) 時(shí)a,b為實(shí)數(shù)時(shí) 22,baab222ba 例3:已知x 的最大值541x求函數(shù) y=4x-2+ 132345145XXY解:”時(shí)取“即”時(shí)取“當(dāng)且僅當(dāng)145145xxx,45 例5:如圖,平面直角坐標(biāo)系中,在y軸正半軸(坐標(biāo)原點(diǎn)除外)上給定兩點(diǎn)A、B, 試在x 軸的正半軸(坐標(biāo)原點(diǎn)除外)上求一點(diǎn)C 使 ACB取

4、得最大值。ACBOxYACOBCOBCAxxcabbBaA,解:設(shè),)0()0 ,(,0), 0(), 0(21tantan1tantantantanxabxbxaabbabaxabxbaxabxba2)0(2最小最小,即時(shí)”時(shí)取“即當(dāng)且僅當(dāng)ACBACBabxabxxabxtan(三)不等式的證明不等式的證明的常用方法有:比較法, 分析法,綜合法,換元法。還可適當(dāng)?shù)倪\(yùn)用判別式,放縮,函數(shù)的單調(diào)性等進(jìn)行不等式的證明,利用已知的基本不等式進(jìn)行證明通常采用綜合法例6:已知 x0,y0求證: xyyxyxyx)(41)(212xyyxyxyx)(41)(212證明:)(212yxxyyxyx)(21y

5、xyxxy0212122yxxy原式得證cbaabcacbbcaRcba333:,7求證:例222444abccabbcacba證明:此題轉(zhuǎn)化為證明22442244224422,2cacacbcbbaba222222444cacbbacba22222222222222222,2abccacbbcacabacabcbba又222222222abccabbcacacbba原不等式成立bbaabbaababa828, 0:822求證:已知例bbabaaba44222需證證明:欲證原不等式只bbaaba41422只需證bbaaba212只需證baab121即此式顯然成立即證01babaab原不等式成立

6、ccbbaaABCcba111,:9的三條邊,求證:是三角形已知例xxxf1)(證明:令xxx111111)上為增函數(shù),在(0)(xf)()(cfbafcbaccbaba11bbaabfaf11)()(又babbaa11ccbaba11ccbbaa111bcbcabcaaf33)3()(222證明:令例10:設(shè)a、b、cR,證明:a2+ac+c2+3b(a+b+c)0, 并指出等號何時(shí)成立 bcbcbc33432220)(3)2(3222bcbcbc0)(,00)(afaf時(shí)成立當(dāng)2222333)(bbabbabaaf此時(shí)cbabababa, 0)(2222(四)不等式 的解法或)()(32.

7、 1xgxf理不等式無理不等式:轉(zhuǎn)化為有式不等式分式不等式:轉(zhuǎn)化為整,數(shù)軸標(biāo)根法高次不等式:因式分解0)(xg2)()(xgxf0)(xg0)(xf)()(xgxf0)(xf0)(xg2)()(xgxf或數(shù)形結(jié)合結(jié)合單調(diào)性指、對數(shù)不等式:換元. 4)數(shù)形結(jié)合)分段討論()等價(jià)轉(zhuǎn)化()平方(定義(不含絕對值的不等式絕對值不等式:轉(zhuǎn)化為5432).1 (.5.0,72|01122的解集求不等式的解集是的不等式:若關(guān)于例abxcxxxcbxaxx2171|0021,71141,149,0141,14914, 9720, 072|022121212121222xxxabxcxcxxxxxxxxxxab

8、xcxcacbacabcbxaxaxxcbxax或的解集為不等式又則的兩個(gè)根為設(shè)方程和的兩個(gè)根為且方程的解集是不等式解: 例12:解不等式2-3x|2x-1|法1:不等式等價(jià)于2x-102-3x2x-1或2x-102-3x1-2x法2:不等式等價(jià)于 2-3x0或2-3x022) 12()32(xx法3:不等式等價(jià)于2x-12-3x53|xx不等式的解集為xxxxx222322:13 解不等式例0232222xxxxx解:移項(xiàng)0232223xxxxx通分0) 1)(3() 1() 123xxxxx(因式分解0) 1)(3()2)(1(2xxxxx即321|xxx或原不等式的解集為)0(12:142axaax解不等式例212aaxy解:數(shù)形結(jié)合:令)0,2)(2(22,1221yaxaxaaaxy則xy12令xo2a1xy1y2aoaxaaaxxa時(shí)不等式的解集為當(dāng)時(shí)不等式的解集為當(dāng)221|20(五)絕對值不等式|a|-|b|ab|a|+|b|的應(yīng)用) 1|(|2| )()(|:,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論