[數(shù)學]人教版【初中數(shù)學】知識點總結-全面整理_第1頁
[數(shù)學]人教版【初中數(shù)學】知識點總結-全面整理_第2頁
[數(shù)學]人教版【初中數(shù)學】知識點總結-全面整理_第3頁
[數(shù)學]人教版【初中數(shù)學】知識點總結-全面整理_第4頁
[數(shù)學]人教版【初中數(shù)學】知識點總結-全面整理_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、人教版初中數(shù)學知識點總結目 錄 TOC o 1-3 h z u HYPERLINK l _Toc348103561 七年級數(shù)學上知識點 PAGEREF _Toc348103561 h 1 HYPERLINK l _Toc348103562 第一章 有理數(shù) PAGEREF _Toc348103562 h 1 HYPERLINK l _Toc348103563 第二章 整式的加減 PAGEREF _Toc348103563 h 3 HYPERLINK l _Toc348103564 第三章 一元一次方程 PAGEREF _Toc348103564 h 4 HYPERLINK l _Toc34810

2、3565 第四章 圖形的認識初步 PAGEREF _Toc348103565 h 5 HYPERLINK l _Toc348103566 七年級數(shù)學下知識點 PAGEREF _Toc348103566 h 6 HYPERLINK l _Toc348103567 第五章 相交線與平行線 PAGEREF _Toc348103567 h 6 HYPERLINK l _Toc348103568 第六章 平面直角坐標系 PAGEREF _Toc348103568 h 8 HYPERLINK l _Toc348103569 第七章 三角形 PAGEREF _Toc348103569 h 9 HYPERLI

3、NK l _Toc348103570 第八章 二元一次方程組 PAGEREF _Toc348103570 h 12 HYPERLINK l _Toc348103571 第九章 不等式與不等式組 PAGEREF _Toc348103571 h 13 HYPERLINK l _Toc348103572 第十章 數(shù)據(jù)的收集、整理與描述 PAGEREF _Toc348103572 h 13 HYPERLINK l _Toc348103573 八年級數(shù)學上知識點 PAGEREF _Toc348103573 h 14 HYPERLINK l _Toc348103574 第十一章 全等三角形 PAGEREF

4、 _Toc348103574 h 14 HYPERLINK l _Toc348103575 第十二章 軸對稱 PAGEREF _Toc348103575 h 15 HYPERLINK l _Toc348103576 第十三章 實數(shù) PAGEREF _Toc348103576 h 16 HYPERLINK l _Toc348103577 第十四章 一次函數(shù) PAGEREF _Toc348103577 h 17 HYPERLINK l _Toc348103578 第十五章 整式的乘除與分解因式 PAGEREF _Toc348103578 h 18 HYPERLINK l _Toc348103579

5、 八年級數(shù)學下知識點 PAGEREF _Toc348103579 h 19 HYPERLINK l _Toc348103580 第十六章 分式 PAGEREF _Toc348103580 h 19 HYPERLINK l _Toc348103581 第十七章 反比例函數(shù) PAGEREF _Toc348103581 h 20 HYPERLINK l _Toc348103582 第十八章勾股定理 PAGEREF _Toc348103582 h 21 HYPERLINK l _Toc348103583 第十九章四邊形 PAGEREF _Toc348103583 h 22 HYPERLINK l _T

6、oc348103584 第二十章 數(shù)據(jù)的分析 PAGEREF _Toc348103584 h 23 HYPERLINK l _Toc348103585 九年級數(shù)學上知識點 PAGEREF _Toc348103585 h 24 HYPERLINK l _Toc348103586 第二十一章 二次根式 PAGEREF _Toc348103586 h 24 HYPERLINK l _Toc348103587 第二十二章 一元二次根式 PAGEREF _Toc348103587 h 25 HYPERLINK l _Toc348103588 第二十三章 旋轉 PAGEREF _Toc348103588

7、h 26 HYPERLINK l _Toc348103589 第二十四章 圓 PAGEREF _Toc348103589 h 27 HYPERLINK l _Toc348103590 第二十五章 概率 PAGEREF _Toc348103590 h 28 HYPERLINK l _Toc348103591 九年級數(shù)學下知識點 PAGEREF _Toc348103591 h 30 HYPERLINK l _Toc348103592 第二十六章 二次函數(shù) PAGEREF _Toc348103592 h 30 HYPERLINK l _Toc348103593 第二十七章 相似 PAGEREF _T

8、oc348103593 h 32 HYPERLINK l _Toc348103594 第二十八章 銳角三角函數(shù) PAGEREF _Toc348103594 h 33 HYPERLINK l _Toc348103595 第二十九章 投影與視圖 PAGEREF _Toc348103595 h 34七年級數(shù)學上知識點人教版七年級數(shù)學上冊主要包含了有理數(shù)、整式的加減、一元一次方程、圖形的認識初步四個章節(jié)的內容.第一章 有理數(shù)知識框架二知識概念 1.有理數(shù):(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不

9、一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);(2)有理數(shù)的分類: 2數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.3相反數(shù):(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;(2)相反數(shù)的和為0 a+b=0 a、b互為相反數(shù).4.絕對值:(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;(2) 絕對值可表示為:或 ;絕對值的問題經常分類討論;5.有理數(shù)比大?。?正數(shù)的絕對值越大,這個數(shù)越大;2正數(shù)永遠比0大,負數(shù)永遠比0?。?正數(shù)大于一切負數(shù);4兩個負數(shù)比大小,絕對值大的反而?。?數(shù)軸上

10、的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;6大數(shù)-小數(shù) 0,小數(shù)-大數(shù) 0.6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);假設 a0,那么的倒數(shù)是;假設ab=1 a、b互為倒數(shù);假設ab=-1 a、b互為負倒數(shù).7. 有理數(shù)加法法那么:1同號兩數(shù)相加,取相同的符號,并把絕對值相加;2異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;3一個數(shù)與0相加,仍得這個數(shù).8有理數(shù)加法的運算律:1加法的交換律:a+b=b+a ;2加法的結合律:a+b+c=a+b+c.9有理數(shù)減法法那么:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+-b.10 有理數(shù)乘法法那么:1兩數(shù)相乘,同號為

11、正,異號為負,并把絕對值相乘;2任何數(shù)同零相乘都得零;3幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.11 有理數(shù)乘法的運算律:1乘法的交換律:ab=ba;2乘法的結合律:abc=abc;3乘法的分配律:ab+c=ab+ac .12有理數(shù)除法法那么:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.13有理數(shù)乘方的法那么:1正數(shù)的任何次冪都是正數(shù);2負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數(shù)時: (-a)n =an 或 (a-b)n=(b-a)n .14乘方的定義:

12、1求相同因式積的運算,叫做乘方;2乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結果叫做冪;15科學記數(shù)法:把一個大于10的數(shù)記成a10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法.16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.請判斷以下題的對錯,并解釋. 1.近似數(shù)25.0的精確度與近似數(shù)25一樣.2.近似數(shù)4千萬與近似數(shù)4000萬的精確度一樣.3.近似數(shù)660萬,它精確到萬位.有三個有效數(shù)字.4.用四舍五入法得近似數(shù)6.40和6.

13、4是相等的.5.近似數(shù)3.7x10的二次與近似數(shù)370的精確度一樣.1、錯。前者精確到十分位小數(shù)點后面一位,后者精確到個位數(shù)。2、錯。4千萬精確到千萬位,4000萬精確到萬位。3、對。4、錯。值雖然相等,但是取之范圍和精確度不同5、錯。3.7x102精確到十位,370精確到個位相關概念:有效數(shù)字:是指從該數(shù)字左邊第一個非0的數(shù)字到該數(shù)字末尾的數(shù)字個數(shù)有點繞口。舉幾個例子:3一共有1個有效數(shù)字,0.0003有一個有效數(shù)字,0.1500有4個有效數(shù)字,1.9*103有兩個有效數(shù)字不要被103迷惑,只需要看1.9的有效數(shù)字就可以了,10n看作是一個單位。精確度:即數(shù)字末尾數(shù)字的單位。比方說:9800

14、.8精確到十分位又叫做小數(shù)點后面一位,80萬精確到萬位。9*105精確到10萬位總共就9一個數(shù)字,10n看作是一個單位,就和多少萬是一個概念。18.混合運算法那么:先乘方,后乘除,最后加減. 本章內容要求學生正確認識有理數(shù)的概念,在實際生活和學習數(shù)軸的根底上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法那么解決實際問題.體驗數(shù)學開展的一個重要原因是生活實際的需要.激發(fā)學生學習數(shù)學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內容時,應該多創(chuàng)設情境,充分表達學生學習的主體性地位。第二章 整式的加減 一知識框架二.知識概念1單

15、項式:在代數(shù)式中,假設只含有乘法包括乘方運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.2單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3多項式:幾個單項式的和叫多項式.4多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。通過本章學習,應使學生到達以下學習目標:1.理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。2.理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進行同

16、類項的合并和去括號。在準確判斷、正確合并同類項的根底上,進行整式的加減運算。3.理解整式中的字母表示數(shù),整式的加減運算建立在數(shù)的運算根底上;理解合并同類項、去括號的依據(jù)是分配律;理解數(shù)的運算律和運算性質在整式的加減運算中仍然成立。4能夠分析實際問題中的數(shù)量關系,并用還有字母的式子表示出來。在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應用意識。第三章 一元一次方程知識框架二知識概念1一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.2一元一次方程的標準形式: a

17、x+b=0 x是未知數(shù),a、b是數(shù),且a0.3一元一次方程解法的一般步驟: 整理方程 去分母 去括號 移項 合并同類項 系數(shù)化為1 檢驗方程的解.4列一元一次方程解應用題: 1讀題分析法: 多用于“和,差,倍,分問題仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-,利用這些關鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關系填入代數(shù)式,得到方程.2畫圖分析法: 多用于“行程問題利用圖形分析數(shù)學問題是數(shù)形結合思想在數(shù)學中的表達,仔細讀題,依照題意畫出有關圖形,使圖形各局部具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而

18、取得布列方程的依據(jù),最后利用量與量之間的關系可把未知數(shù)看做量,填入有關的代數(shù)式是獲得方程的根底.11列方程解應用題的常用公式:1行程問題: 距離=速度時間 ;2工程問題: 工作量=工效工時 ;3比率問題: 局部=全體比率 ;4順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;5商品價格問題: 售價=定價折 ,利潤=售價-本錢, ;6周長、面積、體積問題:C圓=2R,S圓=R2,C長方形=2(a+b),S長方形=ab, C正方形=4a,S正方形=a2,S環(huán)形=(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=R2h ,V圓錐=R2h. 本章內容是代數(shù)學的核心,也

19、是所有代數(shù)方程的根底。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數(shù)學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數(shù)學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數(shù)學思想方法。第四章 圖形的認識初步知識框架本章的主要內容是圖形的初步認識,從生活周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形.通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯(lián)系.在此根底上,認識一些簡單的平面圖形直線、射線、線段和角. 本章書涉及的數(shù)學思想:1.分類討論思想。在過平面上假設干個點畫直線時,應注意對這些點分情況討論;在畫圖形時

20、,應注意圖形的各種可能性。2.方程思想。在處理有關角的大小,線段大小的計算時,常需要通過列方程來解決。3.圖形變換思想。在研究角的概念時,要充分體會對射線旋轉的認識。在處理圖形時應注意轉化思想的應用,如立體圖形與平面圖形的互相轉化。4.化歸思想。在進行直線、線段、角以及相關圖形的計數(shù)時,總要劃歸到公式n(n-1)/2的具體運用上來。七年級數(shù)學下知識點人教版七年級數(shù)學下冊主要包括相交線與平行線、平面直角坐標系、三角形、二元一次方程組、不等式與不等式組和數(shù)據(jù)的收集、整理與表述六章內容。第五章 相交線與平行線一、知識框架二、知識概念1.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的

21、兩個角是鄰補角。2.對頂角:一個角的兩邊分別是另一個角的兩邊的反向延長線,像這樣的兩個角互為對頂角。3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。4.平行線:在同一平面內,不相交的兩條直線叫做平行線。5.同位角、內錯角、同旁內角:兩條直線被第三條直線所截所形成的八個角中,有四對同位角,兩對內錯角,兩對同旁內角。同位角:1與5像這樣具有相同位置關系的一對角叫做同位角。內錯角:4與6像這樣的一對角叫做內錯角。同旁內角:4與5像這樣的一對角叫做同旁內角。6.命題:判斷一件事情的語句叫命題。7.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換

22、,簡稱平移。8.對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。9.定理與性質對頂角的性質:對頂角相等。10垂線的性質:性質1:過一點有且只有一條直線與直線垂直。性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。11.平行公理:經過直線外一點有且只有一條直線與直線平行。平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。12.平行線的性質:性質1:兩直線平行,同位角相等。性質2:兩直線平行,內錯角相等。性質3:兩直線平行,同旁內角互補。13.平行線的判定:判定1:同位角相等,兩直線平行。判定2:內錯角相等,兩直線平

23、行。判定3:同旁內角互補,兩直線平行。本章使學生了解在平面內不重合的兩條直線相交與平行的兩種位置關系,研究了兩條直線相交時的形成的角的特征,兩條直線互相垂直所具有的特性,兩條直線平行的長期共存條件和它所有的特征以及有關圖形平移變換的性質,利用平移設計一些優(yōu)美的圖案.重點:垂線和它的性質,平行線的判定方法和它的性質,平移和它的性質,以及這些的組織運用.難點:探索平行線的條件和特征,平行線條件與特征的區(qū)別,運用平移性質探索圖形之間的平移關系,以及進行圖案設計。第六章 平面直角坐標系一知識框架 二知識概念1.有序數(shù)對:有順序的兩個數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做a,b2.平面直角坐標系:在平面內

24、,兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標系。3.橫軸、縱軸、原點:水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。4.坐標:對于平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數(shù)a,b分別叫點P的橫坐標和縱坐標。5.象限:兩條坐標軸把平面分成四個局部,右上局部叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。平面直角坐標系是數(shù)軸由一維到二維的過渡,同時它又是學習函數(shù)的根底,起到承上啟下的作用。另外,平面直角坐標系將平面內的點與數(shù)結合起來,表達了數(shù)形結合的思想。掌握本節(jié)內容對以后

25、學習和生活有著積極的意義。教師在講授本章內容時應多從實際情形出發(fā),通過對平面上的點的位置確定開展學生創(chuàng)新能力和應用意識。第七章 三角形一知識框架 二知識概念1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。2.三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。4.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。6.三角形的穩(wěn)定性:三角形的形狀是固

26、定的,三角形的這個性質叫三角形的穩(wěn)定性。6.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。7.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。多邊形內角和定理:n邊形的內角的和等于: n 2180,那么正多邊形各內角度數(shù)為: n 2180n多邊形內角和定理證明 證法一:在n邊形內任取一點O,連結O與各個頂點,把n邊形分成n個三角形. 因為這n個三角形的內角的和等于n180,以O為公共頂點的n個角的和是360 所以n邊形的內角和是n180-2180=n-2180. 即n邊形的內角和等于n-2180. 證法二:連結多邊形的任一頂點A1與其他各個頂點的線段,把n邊形分成n-2個三角

27、形. 因為這n-2個三角形的內角和都等于n-2180 所以n邊形的內角和是n-2180. 證法三:在n邊形的任意一邊上任取一點P,連結P點與其它各頂點的線段可以把n邊形分成n-1個三角形, 這n-1個三角形的內角和等于n-1180 以P為公共頂點的n-1個角的和是180 所以n邊形的內角和是n-1180-180=n-2180.正多邊形內角度數(shù)那么其邊數(shù)為:360180內角度數(shù)8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。外角和=N*180-N-2*180=360度。 注:在不考慮角度方向的情況下,以上所述的N邊形,僅為任意凸多邊形。當考慮角度方向的時候,上面的論述也

28、適合凹多邊形。9.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。10.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一局部完全覆蓋,叫做用多邊形覆蓋平面。鑲嵌的一個關鍵點是:在每個公共頂點處,各角的和是3601全等的任意三角形能鑲嵌平面 把一些紙整齊地疊放好,用剪刀一次即可剪出多個全等的三角形用這些全等的三角形可鑲嵌平面這是因為三角形的內角和是180,用6個全等的三角形即可鑲嵌出一個平面如圖1用全等的三角形鑲嵌平面,鑲嵌的方法不止一種,如圖2 2全等的任意四邊形能鑲嵌平面。 仿上面的方法可剪出多個全等

29、的四邊形,用它們可鑲嵌平面這是因為四邊形的內角和是360,用4個全等的四邊形即可鑲嵌出一個平面如圖3其實四邊形的平面鑲嵌可看成是用兩類全等的三角形進行鑲嵌如圖4 3全等的特殊五邊形可鑲嵌平面 圣地亞歌一位家庭婦女,五個孩子的母親瑪喬里賴斯,對平面鑲嵌有很深的研究,尤其對五邊形的鑲嵌提出了很多前所未有的結論1968年克什納斷言只有8類五邊形能鑲嵌平面,可是瑪喬里賴斯后來又找到了5類五邊形能鑲嵌平面,在圖5的五邊形ABCDE中,B=E=90,2AD=2CD=360,a=e,ae=d圖6是她于1977年12月找到的一種用此五邊形鑲嵌的方法用五邊形鑲嵌平面,是否只有13類,還有待研究 4全等的特殊六邊

30、形可鑲嵌平面 1918年,萊因哈特證明了只有3類六邊形能鑲嵌平面圖7是其中之一在圖7的六邊形ABCDEF中,ABC=360,a=d 5七邊形或多于七邊的凸多邊形,不能鑲嵌平面 只有正三角形、正方形和正六邊形可鑲嵌平面,用其它正多邊形不能鑲嵌平面 例如:用正三角形和正六形的組合進行鑲嵌設在一個頂點周圍有m個正三角形的角,有n個正六邊形的角由于正三角形的每個角是60,正六邊形的每個角是120所以有 m60n120=360,即m2n=6 這個方程的正整數(shù)解 或可見用正三角形和正六邊形鑲嵌,有兩種類型,一種是在一個頂點的周圍有4個正三角形和1個正六邊形,另一種是在一個頂點的周圍有2個正三角形和2個正六

31、邊形埃舍爾_百度百科12.公式與性質三角形的內角和:三角形的內角和為180三角形外角的性質:性質1:三角形的一個外角等于和它不相鄰的兩個內角的和。性質2:三角形的一個外角大于任何一個和它不相鄰的內角。多邊形內角和公式:n邊形的內角和等于n-2180多邊形的外角和:多邊形的內角和為360。多邊形對角線的條數(shù):1從n邊形的一個頂點出發(fā)可以引n-3條對角線,把多邊形分詞n-2個三角形。2n邊形共有條對角線。三角形是初中數(shù)學中幾何局部的根底圖形,在學習過程中,教師應該多鼓勵學生動腦動手,發(fā)現(xiàn)和探索其中的知識奧秘。注重培養(yǎng)學生正確的數(shù)學情操和幾何思維能力。第八章 二元一次方程組一知識結構圖 二、知識概念

32、1.二元一次方程:含有兩個未知數(shù),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a0,b0)。2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解。4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。5.消元:將未知數(shù)的個數(shù)由多化少,逐一解決的想法,叫做消元思想。6.代入消元:將一個未知數(shù)用含有另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入

33、法。7.加減消元法:當兩個方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),這種方法叫做加減消元法,簡稱加減法。本章通過實例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養(yǎng)學生對概念的理解和完整性和深刻性,使學生掌握好二元一次方程組的兩種解法.重點:二元一次方程組的解法,列二元一次方程組解決實際問題.難點:二元一次方程組解決實際問題第九章 不等式與不等式組一知識框架二、知識概念1.用符號“ “表示大小關系的式子叫做不等式。2.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。3.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式

34、的解集。4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。5.一元一次不等式組:一般地,關于同一未知數(shù)的幾個一元一次不等式合在一起,就組成6.了一個一元一次不等式組。7.定理與性質不等式的性質:不等式的根本性質1:不等式的兩邊都加上或減去同一個數(shù)或式子,不等號的方向不變。不等式的根本性質2:不等式的兩邊都乘以或除以同一個正數(shù),不等號的方向不變。不等式的根本性質3:不等式的兩邊都乘以或除以同一個負數(shù),不等號的方向改變。本章內容要求學生經歷建立一元一次不等式組這樣的數(shù)學模型并應用它解決實際問題的過程,體會不等式組的特點和作

35、用,掌握運用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強創(chuàng)新精神和應用數(shù)學的意識。第十章 數(shù)據(jù)的收集、整理與描述一知識框架全面調查抽樣調查收集數(shù)據(jù)描述數(shù)據(jù)整理數(shù)據(jù)分析數(shù)據(jù)得出結論 二知識概念1.全面調查:考察全體對象的調查方式叫做全面調查。2.抽樣調查:調查局部數(shù)據(jù),根據(jù)局部來估計總體的調查方式稱為抽樣調查。3.總體:要考察的全體對象稱為總體。4.個體:組成總體的每一個考察對象稱為個體。5.樣本:被抽取的所有個體組成一個樣本。6.樣本容量:樣本中個體的數(shù)目稱為樣本容量。7.頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個數(shù)為該組的頻數(shù)。8.頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。9.組數(shù)和組距

36、:在統(tǒng)計數(shù)據(jù)時,把數(shù)據(jù)按照一定的范圍分成假設干各組,分成組的個數(shù)稱為組數(shù),每一組兩個端點的差叫做組距。本章要求通過實際參與收集、整理、描述和分析數(shù)據(jù)的活動,經歷統(tǒng)計的一般過程,感受統(tǒng)計在生活和生產中的作用,增強學習統(tǒng)計的興趣,初步建立統(tǒng)計的觀念,培養(yǎng)重視調查研究的良好習慣和科學態(tài)度。八年級數(shù)學上知識點人教版八年級上冊主要包括全等三角形、軸對稱、實數(shù)、一次函數(shù)和 整式的乘除與分解因式五個章節(jié)的內容。第十一章 全等三角形一知識框架二知識概念1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動或稱變換使之與另一個重合,這兩個三角形稱為全等三角形。2全等三角形的性質

37、: 全等三角形的對應角相等、對應邊相等。 3.三角形全等的判定公理及推論有: 1“邊角邊簡稱“SAS 2“角邊角簡稱“ASA 3“邊邊邊簡稱“SSS 4“角角邊簡稱“AAS 5斜邊和直角邊相等的兩直角三角形HL。除了邊邊角和角角角。4.角平分線推論:角的內部到角的兩邊的距離相等的點在角的平分線上。5.證明兩三角形全等或利用它證明線段或角的相等的根本方法步驟:、確定條件包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系,、回憶三角形判定,搞清我們還需要什么,、正確地書寫證明格式(順序和對應關系從推導出要證明的問題).在學習三角形的全等時,教師應該從實際生活

38、中的圖形出發(fā),引出全等圖形進而引出全等三角形。通過直觀的理解和比擬發(fā)現(xiàn)全等三角形的微妙之處。在經歷三角形的角平分線、中線等探索中激發(fā)學生的集合思維,啟發(fā)他們的靈感,使學生體會到集合的真正魅力。第十二章 軸對稱一知識框架二知識概念1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的局部能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。2.性質: 1軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。2角平分線上的點到角兩邊距離相等。3線段垂直平分線上的任意一點到線段兩個端點的距離相等。4與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。5軸對稱圖形上對應線段相等、對應角

39、相等。3.等腰三角形的性質:等腰三角形的兩個底角相等,等邊對等角4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一。5.等腰三角形的判定:等角對等邊。6.等邊三角形角的特點:三個內角相等,等于60,7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。 有一個角是60的等腰三角形是等邊三角形 有兩個角是60的三角形是等邊三角形。8.直角三角形中,30角所對的直角邊等于斜邊的一半。9直角三角形斜邊上的中線等于斜邊的一半。本章內容要求學生在建立在軸對稱概念的根底上,能夠對生活中的圖形進行分析鑒賞,親身經歷數(shù)學美,正確理解等腰三角形、等邊三角形等的性質和判定,并利用這

40、些性質來解決一些數(shù)學問題。第十三章 實數(shù)1.算術平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a0時,a才有算術平方根。2.平方根:一般地,如果一個數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。3.正數(shù)有兩個平方根一正一負它們互為相反數(shù);0只有一個平方根,就是它本身;負數(shù)沒有平方根。4.正數(shù)的立方根是正數(shù);0的立方根是0;負數(shù)的立方根是負數(shù)。5.數(shù)a的相反數(shù)是-a,一個正實數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0實數(shù)局部主要要求學生了解無理數(shù)和實數(shù)的概念,知道實數(shù)和數(shù)軸上的點

41、一一對應,能估算無理數(shù)的大??;了解實數(shù)的運算法那么及運算律,會進行實數(shù)的運算。重點是實數(shù)的意義和實數(shù)的分類;實數(shù)的運算法那么及運算律。第十四章 一次函數(shù)一.知識框架二知識概念(1)(2)(3)1.一次函數(shù):假設兩個變量x,y間的關系式可以表示成y=kx+b(k0)的形式,那么稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數(shù)。(1)(3)(2)2.正比例函數(shù)一般式:y=kxk0,其圖象是經過原點(0,0)的一條直線。3.正比例函數(shù)y=kxk0的圖象是一條經過原點的直線,當k0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k0時,y隨x的增大而增大;

42、 當kn).在應用時需要注意以下幾點:法那么使用的前提條件是“同底數(shù)冪相除而且0不能做除數(shù),所以法那么中a0.任何不等于0的數(shù)的0次冪等于1,即,如,(-2.50=1),那么00無意義.任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即( a0,p是正整數(shù)), 而0-1,0-3都是無意義的;當a0時,a-p的值一定是正的; 當a0時,對稱軸左邊,y隨x增大而減??;對稱軸右邊,y隨x增大而增大 當a0時,一元二次方程有兩個不相等的實根,二次函數(shù)圖像與x軸有兩個交點;=0時,一元二次方程有兩個相等的實根,二次函數(shù)圖像與x軸有一個交點;0時,一元二次方程有不等的實根,二次函數(shù)圖像與x軸沒有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論