




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以
2、線段為直徑的圓外,則雙曲線離心率的取值范圍是( )ABCD2已知復數(shù),則的虛部是( )ABCD13劉徽是我國魏晉時期偉大的數(shù)學家,他在九章算術(shù)中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機取一個點,此點取自朱方的概率為( )ABCD4以,為直徑的圓的方程是ABCD5函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為( )ABCD6已知平面向量滿足與的夾角為,且,則實數(shù)的值為( )AB
3、CD7已知無窮等比數(shù)列的公比為2,且,則( )ABCD8函數(shù)在上的最大值和最小值分別為( )A,-2B,-9C-2,-9D2,-29一場考試需要2小時,在這場考試中鐘表的時針轉(zhuǎn)過的弧度數(shù)為( )ABCD10已知函數(shù)在區(qū)間有三個零點,且,若,則的最小正周期為( )ABCD11某工廠一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中錯誤的是( )A收入最高值與收入最低值的比是B結(jié)余最高的月份是月份C與月份的收入的變化率與至月份的收入的變化率相同D前個月的平均收入為萬元12若樣本的平均數(shù)是10,方差為2,則對于樣本,下列結(jié)論正確的是( )A平均數(shù)為20,方差為4B平均數(shù)為11,方差為4C平均數(shù)為
4、21,方差為8D平均數(shù)為20,方差為8二、填空題:本題共4小題,每小題5分,共20分。13已知是等比數(shù)列,若,,且,則_.14已知等邊三角形的邊長為1,點、分別為線段、上的動點,則取值的集合為_15二項式的展開式中所有項的二項式系數(shù)之和是64,則展開式中的常數(shù)項為_.16如圖是一個算法的偽代碼,運行后輸出的值為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.18(12分
5、)在開展學習強國的活動中,某校高三數(shù)學教師成立了黨員和非黨員兩個學習組,其中黨員學習組有4名男教師、1名女教師,非黨員學習組有2名男教師、2名女教師,高三數(shù)學組計劃從兩個學習組中隨機各選2名教師參加學校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學期望.19(12分)若正數(shù)滿足,求的最小值.20(12分)在直角坐標系中,已知點,的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)設曲線與曲線相交于,兩點,求的值.21(12分)
6、已知奇函數(shù)的定義域為,且當時,.(1)求函數(shù)的解析式;(2)記函數(shù),若函數(shù)有3個零點,求實數(shù)的取值范圍.22(10分)已知函數(shù)()的圖象在處的切線為(為自然對數(shù)的底數(shù))(1)求的值;(2)若,且對任意恒成立,求的最大值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】雙曲線=1的漸近線方程為y=x,不妨設過點F1與雙曲線的一條漸過線平行的直線方程為y=(xc),與y=x聯(lián)立,可得交點M(,),點M在以線段F1F1為直徑的圓外,|OM|OF1|,即有+c1,3,即b13a1,c1a13a1,即c1a則e=1雙曲線離心率的取
7、值范圍是(1,+)故選:A點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.2C【解析】化簡復數(shù),分子分母同時乘以,進而求得復數(shù),再求出,由此得到虛部.【詳解】,所以的虛部為.故選:C【點睛】本小題主要考查復數(shù)的乘法、除法運算,考查共軛復數(shù)的虛部,屬于基礎題.3C【解析】首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以
8、此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于基礎題.4A【解析】設圓的標準方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設圓的標準方程為,由題意得圓心為,的中點,根據(jù)中點坐標公式可得,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設圓的標準方程,建立方程組,屬于基礎題.5A【解析】由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所
9、以,所以,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎題.6D【解析】由已知可得,結(jié)合向量數(shù)量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數(shù)量積運算,向量垂直的應用,考查計算求解能力,屬于基礎題.7A【解析】依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結(jié)果。【詳解】因為無窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,解得,所以,故選A?!军c睛】本題主要考查無窮等比數(shù)列求和
10、公式的應用。8B【解析】由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當時,有最大值,當時,有最小值.故選:B.【點睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎題.9B【解析】因為時針經(jīng)過2小時相當于轉(zhuǎn)了一圈的,且按順時針轉(zhuǎn)所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉(zhuǎn)一周為12小時,轉(zhuǎn)過的角度為,按順時針轉(zhuǎn)所形成的角為負角,所以經(jīng)過2小時,時針所轉(zhuǎn)過的弧度數(shù)為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.10C【解析】根據(jù)題意,知當
11、時,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,當時,由對稱軸可知,滿足,即.同理,滿足,即,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應用,考查計算能力.11D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項正確;結(jié)余最高為月份,為,故項正確;至月份的收入的變化率為至月份的收入的變化率相同,故項正確;前個月的平均收入為萬元,故項錯誤綜上,故選12D【解析】由兩組數(shù)據(jù)間的關(guān)系,可判斷二者平均數(shù)的關(guān)系,方差的關(guān)系,進而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方
12、差為.故選:D.【點睛】樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.二、填空題:本題共4小題,每小題5分,共20分。13【解析】若,,且,則,由是等比數(shù)列,可知公比為.故答案為.14【解析】根據(jù)題意建立平面直角坐標系,設三角形各點的坐標,依題意求出,的表達式,再進行數(shù)量積的運算,最后求和即可得出結(jié)果.【詳解】解: 以的中點為坐標原點,所在直線為軸,線段的垂直平分線為軸建立平面直角坐標系,如圖所示,則,則,設, ,即點的坐標為,則,所以故答案為: 【點睛】本題考查平面向量的坐標表示和線性運算,以及平面向量基本定理和數(shù)量積的運算,是中檔題.15【解析】由二項式系數(shù)性質(zhì)求出,由二項展開式通項公式得
13、出常數(shù)項的項數(shù),從而得常數(shù)項【詳解】由題意,展開式通項為,由得,常數(shù)項為故答案為:【點睛】本題考查二項式定理,考查二項式系數(shù)的性質(zhì),掌握二項展開式通項公式是解題關(guān)鍵1613【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時輸出的b值為13.故答案為13.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)或【解析】(1)根據(jù)題意計算得到,得到橢圓方程.(2)設,聯(lián)立方程得到,根據(jù),計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得
14、.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設,由消得,所以,因為,所以.因為點在以線段為直徑的圓上,所以,即,所以直線的方程或.【點睛】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關(guān)系求直線,將題目轉(zhuǎn)化為是解題的關(guān)鍵.18(1)28種;(2)分布見解析,.【解析】(1)分這名女教師分別來自黨員學習組與非黨員學習組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個取值的概率,可得X的概率分布和數(shù)學期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數(shù)為種.(2)X的可能取值為0,1,2,3. ,.故X的概率分布為:X0123P所以.【點睛】本題主要考
15、查組合數(shù)與組合公式及離散型隨機變量的期望和方差,相對不難,注意運算的準確性.19【解析】試題分析:由柯西不等式得,所以試題解析:因為均為正數(shù),且,所以于是由均值不等式可知,當且僅當時,上式等號成立從而故的最小值為此時考點:柯西不等式20(1);(2)【解析】(1)消去參數(shù)方程中的參數(shù),求得的普通方程,利用極坐標和直角坐標的轉(zhuǎn)化公式,求得的直角坐標方程.(2)求得曲線的標準參數(shù)方程,代入的直角坐標方程,寫出韋達定理,根據(jù)直線參數(shù)中參數(shù)的幾何意義,求得的值.【詳解】(1)由的參數(shù)方程(為參數(shù)),消去參數(shù)可得,由曲線的極坐標方程為,得,所以的直角坐方程為,即.(2)因為在曲線上,故可設曲線的參數(shù)方程
16、為(為參數(shù)),代入化簡可得.設,對應的參數(shù)分別為,則,所以.【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標方程化為直角坐標方程,考查利用利用和直線參數(shù)方程中參數(shù)的幾何意義進行計算,屬于中檔題.21(1);(2)【解析】(1)根據(jù)奇函數(shù)定義,可知;令則,結(jié)合奇函數(shù)定義即可求得時的解析式,進而得函數(shù)的解析式;(2)根據(jù)零點定義,可得,由函數(shù)圖像分析可知曲線與直線在第三象限必1個交點,因而需在第一象限有2個交點,將與聯(lián)立,由判別式及兩根之和大于0,即可求得的取值范圍.【詳解】(1)因為函數(shù)為奇函數(shù),且,故;當時,則;故.(2)令,解得,畫出函數(shù)關(guān)系如下圖所示,要使曲線與直線有3個交點,則2個交點在第一象限,1個交點在第三象限,聯(lián)立,化簡可得,令,即, 解得,所以實數(shù)的取值范圍為.【點睛】本題考查了根據(jù)函數(shù)奇偶性求解析式,分段函數(shù)圖像畫法,由函數(shù)零點個數(shù)求參數(shù)的取值范圍應用,數(shù)形結(jié)合的應用,屬于中檔題.22 (1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據(jù)函數(shù)的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據(jù)對任意恒成立,等價于對任意恒成立,構(gòu)造,求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZLX 088-2024 綠色食品 永嘉早香柚生產(chǎn)技術(shù)規(guī)程
- 二零二五年度新材料研發(fā)股份分紅及市場拓展合同模板
- T-ZGZX 0003-2024 成年智力殘疾人托養(yǎng)服務指南
- 二零二五年度夫妻共同財產(chǎn)保全與婚后生活規(guī)劃協(xié)議
- 二零二五年度企業(yè)合同管理制度與品牌建設合同
- 二零二五年度智慧城市建設抵押貸款協(xié)議
- 二零二五年度城市建筑工地渣土車租賃管理協(xié)議
- 二零二五年度農(nóng)村土地承包經(jīng)營權(quán)流轉(zhuǎn)與農(nóng)業(yè)病蟲害防治服務合同
- 二零二五年度高科技企業(yè)股權(quán)合作協(xié)議書
- 2025年度生物制藥產(chǎn)業(yè)合作投資合同
- 英語演講技巧與實訓學習通超星期末考試答案章節(jié)答案2024年
- 機械制造技術(shù)基礎(課程課件完整版)
- 2024年海南省公務員錄用考試《行測》試題及答案解析
- 《預防未成年人犯罪》課件(圖文)
- 九年級化學人教版跨學科實踐3水質(zhì)檢測及自制凈水器教學設計
- 【醫(yī)院藥品管理系統(tǒng)探析與設計(論文)10000字】
- 螺旋體病梅毒課件
- 2024年咸寧市引進人才44名歷年高頻難、易錯點500題模擬試題附帶答案詳解
- (小學組)全國版圖知識競賽考試題含答案
- LY/T 3371-2024草原生態(tài)狀況評價技術(shù)規(guī)范
- 《農(nóng)產(chǎn)品食品檢驗員職業(yè)技能培訓(中高級)》課程標準
評論
0/150
提交評論