![2022屆廣東省深圳市寶安高考仿真卷數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view/5db626bae69bf04b35b011b1df44b9ac/5db626bae69bf04b35b011b1df44b9ac1.gif)
![2022屆廣東省深圳市寶安高考仿真卷數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view/5db626bae69bf04b35b011b1df44b9ac/5db626bae69bf04b35b011b1df44b9ac2.gif)
![2022屆廣東省深圳市寶安高考仿真卷數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view/5db626bae69bf04b35b011b1df44b9ac/5db626bae69bf04b35b011b1df44b9ac3.gif)
![2022屆廣東省深圳市寶安高考仿真卷數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view/5db626bae69bf04b35b011b1df44b9ac/5db626bae69bf04b35b011b1df44b9ac4.gif)
![2022屆廣東省深圳市寶安高考仿真卷數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view/5db626bae69bf04b35b011b1df44b9ac/5db626bae69bf04b35b011b1df44b9ac5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認(rèn)真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1雙曲線的一條漸近線方程為,那么它的離心率為( )ABCD2設(shè)函數(shù)的定義域為,滿足,且當(dāng)時,.若對任意,都有,則的取值范圍是( ).ABCD3已知函數(shù),若,則的取值范圍是( )ABCD4已知平面向量滿足與的夾角為,且,則實數(shù)的值為( )ABCD
2、5已知函數(shù),.若存在,使得成立,則的最大值為( )ABCD6復(fù)數(shù)的虛部為()A1B3C1D27若函數(shù)f(x)x3x2在區(qū)間(a,a5)上存在最小值,則實數(shù)a的取值范圍是A5,0)B(5,0)C3,0)D(3,0)8已知集合A,則集合( )ABCD9設(shè)等差數(shù)列的前項和為,若,則( )A21B22C11D1210執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的( )A9B31C15D6311若函數(shù),在區(qū)間上任取三個實數(shù),均存在以,為邊長的三角形,則實數(shù)的取值范圍是( )ABCD12已知雙曲線C:=1(a0,b0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率
3、為( )ABC2D+1二、填空題:本題共4小題,每小題5分,共20分。13若函數(shù)在區(qū)間上恰有4個不同的零點,則正數(shù)的取值范圍是_.14請列舉用0,1,2,3這4個數(shù)字所組成的無重復(fù)數(shù)字且比210大的所有三位奇數(shù):_15函數(shù)與的圖象上存在關(guān)于軸的對稱點,則實數(shù)的取值范圍為_.16在中,已知,是邊的垂直平分線上的一點,則_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)證明:函數(shù)在上存在唯一的零點;(2)若函數(shù)在區(qū)間上的最小值為1,求的值.18(12分)已知函數(shù),其中為自然對數(shù)的底數(shù).(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求的取值范圍;(2)若函數(shù)在區(qū)間上
4、恰有3個零點,且,求的取值范圍.19(12分)某超市在節(jié)日期間進行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數(shù)額,求隨機變量X的分布列和數(shù)學(xué)期望.20(12分)設(shè)函數(shù),其中,為正實數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;(2)設(shè),證明:對任意,都有.21(12分)設(shè)函數(shù).
5、(1)若函數(shù)在是單調(diào)遞減的函數(shù),求實數(shù)的取值范圍;(2)若,證明:.22(10分)已知.() 若,求不等式的解集;(),求實數(shù)的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】雙曲線的一條漸近線方程為,可得,雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎(chǔ)題.2B【解析】求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當(dāng)時,又,所以至少小于7,此時,令,得,解得或,結(jié)合圖象,故.故選:B.【點睛】本題考查不等式
6、恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.3B【解析】對分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.4D【解析】由已知可得,結(jié)合向量數(shù)量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數(shù)量積運算,向量垂直的應(yīng)用,考查計算求解能力,屬于基礎(chǔ)題.5C【解析】由題意可知,由可得出,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,由于,則,同理可知,函
7、數(shù)的定義域為,對恒成立,所以,函數(shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,則,則,構(gòu)造函數(shù),其中,則.當(dāng)時,此時函數(shù)單調(diào)遞增;當(dāng)時,此時函數(shù)單調(diào)遞減.所以,.故選:C.【點睛】本題考查代數(shù)式最值的計算,涉及指對同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.6B【解析】對復(fù)數(shù)進行化簡計算,得到答案.【詳解】所以的虛部為故選B項.【點睛】本題考查復(fù)數(shù)的計算,虛部的概念,屬于簡單題.7C【解析】求函數(shù)導(dǎo)數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f(x)x22xx(x2),故f(x)在(,2),(0,)上是增函數(shù),在(2,0)上是減函數(shù),作出
8、其圖象如圖所示令x3x2,得x0或x3,則結(jié)合圖象可知,解得a3,0),故選C.【點睛】本題主要考查了利用函數(shù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進而研究函數(shù)的最值,屬于??碱}型.8A【解析】化簡集合,,按交集定義,即可求解.【詳解】集合,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎(chǔ)題.9A【解析】由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以 ,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),
9、可使得計算量大大減少.10B【解析】根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.11D【解析】利用導(dǎo)數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,所以在上遞減,在上遞增,在處取得極小值也即是最小值,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數(shù),均存在以,為邊長的三角形,則需恒成立,且,也即,也即當(dāng)、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導(dǎo)
10、數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.12B【解析】以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學(xué)生的計算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13;【解析】求出函數(shù)的零點,讓正數(shù)零點從小到大排列,第三個正數(shù)零點落在區(qū)間上,第四個零點在區(qū)間外即可【詳解】由,得, ,解得故答案為:【點睛】本題考查函數(shù)的零點,根據(jù)正弦函數(shù)性質(zhì)求出函數(shù)零點,然后題意,把正數(shù)零點從小到大排列,由于0已經(jīng)是
11、一個零點,因此只有前3個零點在區(qū)間上由此可得的不等關(guān)系,從而得出結(jié)論,本題解法屬于中檔題14231,321,301,1【解析】分個位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個數(shù)字所組成的無重復(fù)數(shù)字比210大的所有三位奇數(shù)有:(1)當(dāng)個位數(shù)字是1時,數(shù)字可以是231,321,301;(2)當(dāng)個位數(shù)字是3時數(shù)字可以是1故答案為:231,321,301,1【點睛】本題考查了分類計數(shù)法的應(yīng)用,考查了學(xué)生分類討論,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.15【解析】先求得與關(guān)于軸對稱的函數(shù),將問題轉(zhuǎn)化為與的圖象有交點,即方程有解.對分成三種情況進行分類討論,由此求得實數(shù)的取值范圍.【詳解】因為關(guān)于
12、軸對稱的函數(shù)為,因為函數(shù)與的圖象上存在關(guān)于軸的對稱點,所以與的圖象有交點,方程有解.時符合題意.時轉(zhuǎn)化為有解,即,的圖象有交點,是過定點的直線,其斜率為,若,則函數(shù)與的圖象必有交點,滿足題意;若,設(shè),相切時,切點的坐標(biāo)為,則,解得,切線斜率為,由圖可知,當(dāng),即時,的圖象有交點,此時,與的圖象有交點,函數(shù)與的圖象上存在關(guān)于軸的對稱點,綜上可得,實數(shù)的取值范圍為.故答案為:【點睛】本小題主要考查利用導(dǎo)數(shù)求解函數(shù)的零點以及對稱性,函數(shù)與方程等基礎(chǔ)知識,考查學(xué)生分析問題,解決問題的能力,推理與運算求解能力,轉(zhuǎn)化與化歸思想和應(yīng)用意識.16【解析】作出圖形,設(shè)點為線段的中點,可得出且,進而可計算出的值.【
13、詳解】設(shè)點為線段的中點,則,.故答案為:.【點睛】本題考查平面向量數(shù)量積的計算,涉及平面向量數(shù)量積運算律的應(yīng)用,解答的關(guān)鍵就是選擇合適的基底表示向量,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見解析;(2)【解析】(1)求解出導(dǎo)函數(shù),分析導(dǎo)函數(shù)的單調(diào)性,再結(jié)合零點的存在性定理說明在上存在唯一的零點即可;(2)根據(jù)導(dǎo)函數(shù)零點,判斷出的單調(diào)性,從而可確定,利用以及的單調(diào)性,可確定出之間的關(guān)系,從而的值可求.【詳解】(1)證明:,.在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,函數(shù)在上單調(diào)遞增.又,令,則在上單調(diào)遞減,故.令,則所以函數(shù)在上存在唯一的
14、零點.(2)解:由(1)可知存在唯一的,使得,即(*).函數(shù)在上單調(diào)遞增.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.由(*)式得.,顯然是方程的解.又是單調(diào)遞減函數(shù),方程有且僅有唯一的解,把代入(*)式,得,即所求實數(shù)的值為.【點睛】本題考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,其中涉及到判斷函數(shù)在給定區(qū)間上的零點個數(shù)以及根據(jù)函數(shù)的最值求解參數(shù),難度較難.(1)判斷函數(shù)的零點個數(shù)時,可結(jié)合函數(shù)的單調(diào)性以及零點的存在性定理進行判斷;(2)函數(shù)的“隱零點”問題,可通過“設(shè)而不求”的思想進行分析.18(1);(2).【解析】(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區(qū)間內(nèi)恰有一個零點,轉(zhuǎn)化為在區(qū)間內(nèi)恰
15、有兩個零點,由(1)的結(jié)論對分類討論,根據(jù)單調(diào)性,結(jié)合零點存在性定理,即可求出結(jié)論.【詳解】(1)由題意得,則,當(dāng)函數(shù)在區(qū)間上單調(diào)遞增時,在區(qū)間上恒成立.(其中),解得.當(dāng)函數(shù)在區(qū)間上單調(diào)遞減時,在區(qū)間上恒成立,(其中),解得.綜上所述,實數(shù)的取值范圍是.(2).由,知在區(qū)間內(nèi)恰有一個零點,設(shè)該零點為,則在區(qū)間內(nèi)不單調(diào).在區(qū)間內(nèi)存在零點,同理在區(qū)間內(nèi)存在零點.在區(qū)間內(nèi)恰有兩個零點.由(1)易知,當(dāng)時,在區(qū)間上單調(diào)遞增,故在區(qū)間內(nèi)至多有一個零點,不合題意.當(dāng)時,在區(qū)間上單調(diào)遞減,故在區(qū)間內(nèi)至多有一個零點,不合題意,.令,得,函數(shù)在區(qū)間上單凋遞減,在區(qū)間上單調(diào)遞增.記的兩個零點為,必有.由,得.又
16、,.綜上所述,實數(shù)的取值范圍為.【點睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、零點問題,意在考查直觀想象、邏輯推理、數(shù)學(xué)計算能力,屬于較難題.19(1);(2)20.【解析】(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1分別求出取各個值時的概率,即可求出分布列和數(shù)學(xué)期望.【詳解】(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎停止的概率(2)的可能取值為:0,10,20,30,1,隨機變量X的分布列為: X 0 10 20 3
17、0 1 P 數(shù)學(xué)期望.【點睛】本題主要考查離散型隨機變量的分布列和數(shù)學(xué)期望,屬于中檔題.20(1) (2)證明見解析【解析】(1)據(jù)題意可得在區(qū)間上恒成立,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當(dāng)時,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性從而證明在區(qū)間上成立,從而證明對任意,都有.【詳解】(1)解:因為函數(shù)的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設(shè),其中,所以,其中,.當(dāng),即時,所以函數(shù)在上單調(diào)遞增,故成立,滿足題意.當(dāng),即時,設(shè),則圖象的對稱軸,所以在上存在唯一實根,設(shè)為,則,所以在上單調(diào)遞減,此時,不合題意.綜上可得,實數(shù)的取值范圍是.(2)證明:
18、由題意得,因為當(dāng)時,所以.令,則,所以在上單調(diào)遞增,即,所以,從而.由(1)知當(dāng)時,在上恒成立,整理得.令,則要證,只需證.因為,所以在上單調(diào)遞增,所以,即在上恒成立.綜上可得,對任意,都有成立.【點睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的作用,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性與求函數(shù)最值,利用導(dǎo)數(shù)證明不等式,屬于難題.21(1)(2)證明見解析【解析】(1)求出導(dǎo)函數(shù),由在上恒成立,采用分離參數(shù)法求解;(2)觀察函數(shù),不等式湊配后知,利用時可證結(jié)論【詳解】(1)因為在上單調(diào)遞減,所以,即在上恒成立因為在上是單調(diào)遞減的,所以,所以(2)因為,所以由(1)知,當(dāng)時,在上單調(diào)遞減所以即所以.【點睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式解題關(guān)鍵是把不等式與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度膠合板原材料質(zhì)量檢測服務(wù)合同
- 2025年度智能電網(wǎng)設(shè)備加工與性能評估合同
- 2025年合同管理系統(tǒng)與客戶關(guān)系維護合同
- 2025年度智能家居升級改造工程合同模板
- 2025年度會議費預(yù)算調(diào)整與控制管理合同范本
- 2025年中國飛機電子飛行包(EFB)行業(yè)市場集中度、投融資動態(tài)及未來趨勢預(yù)測報告(智研咨詢發(fā)布)
- 2025年度建筑工程泥工勞務(wù)分包施工安全防護合同
- 2025年度戶外廣告設(shè)施清潔與維護服務(wù)合同
- 2025年度智慧交通系統(tǒng)開發(fā)與應(yīng)用合同
- 2025年度管子配件知識產(chǎn)權(quán)授權(quán)合同
- 《監(jiān)理安全培訓(xùn)》課件
- 2022-2023年人教版九年級物理上冊期末考試(真題)
- 關(guān)漢卿的生平與創(chuàng)作
- 一年級語文教材解讀分析ppt
- 編本八年級下全冊古詩詞原文及翻譯
- 公共政策學(xué)政策分析的理論方法和技術(shù)課件
- 裝載機教材課件
- 萬人計劃藍色簡約萬人計劃青年拔尖人才答辯PPT模板
- 統(tǒng)編高中《思想政治》教材編寫理念和內(nèi)容介紹
- 2022年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)試卷 新高考Ⅰ卷(含解析)
- (完整版)中心醫(yī)院心血管學(xué)科的??平ㄔO(shè)與發(fā)展規(guī)劃
評論
0/150
提交評論