2022屆貴州省六盤水市高考仿真模擬數(shù)學(xué)試卷含解析_第1頁
2022屆貴州省六盤水市高考仿真模擬數(shù)學(xué)試卷含解析_第2頁
2022屆貴州省六盤水市高考仿真模擬數(shù)學(xué)試卷含解析_第3頁
2022屆貴州省六盤水市高考仿真模擬數(shù)學(xué)試卷含解析_第4頁
2022屆貴州省六盤水市高考仿真模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時(shí)請(qǐng)按要求用筆。3請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1如圖,拋物線:的焦點(diǎn)為,過點(diǎn)的直線與拋物線交于,兩點(diǎn),若直線與以為圓心,線段(為坐標(biāo)原點(diǎn))長為半徑的圓交于,兩點(diǎn),

2、則關(guān)于值的說法正確的是( )A等于4B大于4C小于4D不確定2已知為兩條不重合直線,為兩個(gè)不重合平面,下列條件中,的充分條件是( )ABCD3已知函數(shù),則的極大值點(diǎn)為( )ABCD4橢圓是日常生活中常見的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個(gè)角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計(jì)),在玻璃杯傾斜的過程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是( )ABCD5我國著名數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個(gè)大于的偶數(shù)可以表

3、示為兩個(gè)素?cái)?shù)的和”( 注:如果一個(gè)大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個(gè)整數(shù)為素?cái)?shù)),在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,則的概率是( )ABCD6已知,則的取值范圍是()A0,1BC1,2D0,27根據(jù)最小二乘法由一組樣本點(diǎn)(其中),求得的回歸方程是,則下列說法正確的是( )A至少有一個(gè)樣本點(diǎn)落在回歸直線上B若所有樣本點(diǎn)都在回歸直線上,則變量同的相關(guān)系數(shù)為1C對(duì)所有的解釋變量(),的值一定與有誤差D若回歸直線的斜率,則變量x與y正相關(guān)8橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,則的大小為( )ABCD9已知橢圓(ab0)與雙曲線(a0,b0)的焦點(diǎn)相同,則雙曲線漸近線方程為()ABCD10設(shè)

4、集合,則( )ABCD11某四棱錐的三視圖如圖所示,則該四棱錐的體積為( )ABCD12已知,復(fù)數(shù),且為實(shí)數(shù),則( )ABC3D-3二、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù),則關(guān)于的不等式的解集為_14已知函數(shù)有且只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為_.15雙曲線的焦距為_,漸近線方程為_16已知函數(shù)是定義在上的奇函數(shù),且周期為,當(dāng)時(shí),則的值為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知拋物線:y22px(p0)的焦點(diǎn)為F,P是拋物線上一點(diǎn),且在第一象限,滿足(2,2)(1)求拋物線的方程;(2)已知經(jīng)過點(diǎn)A(3,2)的直線交拋物線于M,N

5、兩點(diǎn),經(jīng)過定點(diǎn)B(3,6)和M的直線與拋物線交于另一點(diǎn)L,問直線NL是否恒過定點(diǎn),如果過定點(diǎn),求出該定點(diǎn),否則說明理由18(12分)已知函數(shù)(為常數(shù))()當(dāng)時(shí),求的單調(diào)區(qū)間;()若為增函數(shù),求實(shí)數(shù)的取值范圍.19(12分)己知,.(1)求證:;(2)若,求證:.20(12分)已知函數(shù)u(x)xlnx,v(x)x1,mR(1)令m2,求函數(shù)h(x)的單調(diào)區(qū)間;(2)令f(x)u(x)v(x),若函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,且滿足1e(e為自然對(duì)數(shù)的底數(shù))求x1x2的最大值21(12分)如圖,在三棱柱中,為的中點(diǎn),且.(1)求證:平面;(2)求銳二面角的余弦值.22(10分)在平面直角坐

6、標(biāo)系中,已知橢圓的中心為坐標(biāo)原點(diǎn)焦點(diǎn)在軸上,右頂點(diǎn)到右焦點(diǎn)的距離與它到右準(zhǔn)線的距離之比為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是橢圓上關(guān)于軸對(duì)稱的任意兩點(diǎn),設(shè),連接交橢圓于另一點(diǎn)求證:直線過定點(diǎn)并求出點(diǎn)的坐標(biāo);(3)在(2)的條件下,過點(diǎn)的直線交橢圓于兩點(diǎn),求的取值范圍參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】利用的坐標(biāo)為,設(shè)直線的方程為,然后聯(lián)立方程得,最后利用韋達(dá)定理求解即可【詳解】據(jù)題意,得點(diǎn)的坐標(biāo)為.設(shè)直線的方程為,點(diǎn),的坐標(biāo)分別為,.討論:當(dāng)時(shí),;當(dāng)時(shí),據(jù),得,所以,所以.【點(diǎn)睛】本題考查直線與拋物線的相交問題

7、,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎(chǔ)題2D【解析】根據(jù)面面垂直的判定定理,對(duì)選項(xiàng)中的命題進(jìn)行分析、判斷正誤即可.【詳解】對(duì)于A,當(dāng),時(shí),則平面與平面可能相交,故不能作為的充分條件,故A錯(cuò)誤;對(duì)于B,當(dāng),時(shí),則,故不能作為的充分條件,故B錯(cuò)誤;對(duì)于C,當(dāng),時(shí),則平面與平面相交,故不能作為的充分條件,故C錯(cuò)誤;對(duì)于D,當(dāng),則一定能得到,故D正確.故選:D.【點(diǎn)睛】本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.3A【解析】求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【詳解】因?yàn)?,故可得,令,因?yàn)椋士傻没?,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.

8、【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.4C【解析】根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時(shí)橢圓的離心率,進(jìn)而確定離心率的取值范圍.【詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大.此時(shí)橢圓長軸長為,短軸長為6,所以橢圓離心率,所以.故選:C【點(diǎn)睛】本題考查了橢圓的定義及其性質(zhì)的簡單應(yīng)用,屬于基礎(chǔ)題.5B【解析】先列舉出不超過的素?cái)?shù),并列舉出所有的基本事件以及事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素?cái)?shù)有

9、:、,在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù),所有的基本事件有:、,共種情況,其中,事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,且”包含的基本事件有:、,共種情況,因此,所求事件的概率為.故選:B.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,一般利用列舉法列舉出基本事件,考查計(jì)算能力,屬于基礎(chǔ)題.6D【解析】設(shè),可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設(shè),則,()22|224,所以可得:,配方可得,所以,又 則0,2故選:D【點(diǎn)睛】本題考查了向量的運(yùn)算綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7D【解析】對(duì)每一個(gè)選項(xiàng)逐一分析判斷得解.【詳解】回

10、歸直線必過樣本數(shù)據(jù)中心點(diǎn),但樣本點(diǎn)可能全部不在回歸直線上故A錯(cuò)誤;所有樣本點(diǎn)都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯(cuò)誤;若所有的樣本點(diǎn)都在回歸直線上,則的值與相等,故C錯(cuò)誤;相關(guān)系數(shù)r與符號(hào)相同,若回歸直線的斜率,則,樣本點(diǎn)分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確故選D【點(diǎn)睛】本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.8C【解析】根據(jù)橢圓的定義可得,再利用余弦定理即可得到結(jié)論.【詳解】由題意,又,則,由余弦定理可得.故.故選:C.【點(diǎn)睛】本題考查橢圓的定義,考查余弦定理,考查運(yùn)算能力,屬于基礎(chǔ)題.9A【解析】由題意可得,即,代入雙曲線的漸

11、近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點(diǎn)相同,可得:,即,可得,雙曲線的漸近線方程為:,故選:A【點(diǎn)睛】本題考查橢圓和雙曲線的方程和性質(zhì),考查漸近線方程的求法,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題10A【解析】解出集合,利用交集的定義可求得集合.【詳解】因?yàn)?,又,所?故選:A.【點(diǎn)睛】本題考查交集的計(jì)算,同時(shí)也考查了一元二次不等式的求解,考查計(jì)算能力,屬于基礎(chǔ)題.11B【解析】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點(diǎn)睛】本題

12、考查了利用三視圖求幾何體體積的問題,是基礎(chǔ)題12B【解析】把和 代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,利用虛部為0求得m值【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13【解析】判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運(yùn)用單調(diào)性,可得到所求解集【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)遞增,即,即x故答案為:【點(diǎn)睛】本題考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用:解不等式,考查轉(zhuǎn)化思想和運(yùn)算能力,屬于中檔題14【解析】當(dāng)時(shí),轉(zhuǎn)化條件得有唯一實(shí)數(shù)根,令,通過求導(dǎo)得到的單調(diào)性后數(shù)形結(jié)合即可得解.【詳解】當(dāng)時(shí),故不是函數(shù)的零點(diǎn);當(dāng)時(shí),即

13、,令,當(dāng)時(shí),;當(dāng)時(shí),的單調(diào)減區(qū)間為,增區(qū)間為,又 ,可作出的草圖,如圖:則要使有唯一實(shí)數(shù)根,則.故答案為:.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的應(yīng)用,考查了轉(zhuǎn)化化歸思想和數(shù)形結(jié)合思想,屬于難題.156 【解析】由題得 所以焦距,故第一個(gè)空填6.由題得漸近線方程為.故第二個(gè)空填.16【解析】由題意可得:,周期為,可得,可求出,最后再求的值即可.【詳解】解:函數(shù)是定義在上的奇函數(shù),.由周期為,可知,.故答案為:.【點(diǎn)睛】本題主要考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)y24x;(2)直線NL恒過定點(diǎn)(3,0),理由見解析.【解析】(1)根據(jù)拋物線

14、的方程,求得焦點(diǎn)F(,0),利用(2,2),表示點(diǎn)P的坐標(biāo),再代入拋物線方程求解.(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因?yàn)锳(3,2),B(3,6)在這兩條直線上,分別代入兩直線的方程可得y1y212,然后表示直線NL的方程為:yy1(x),代入化簡求解.【詳解】(1)由拋物線的方程可得焦點(diǎn)F(,0),滿足(2,2)的P的坐標(biāo)為(2,2),P在拋物線上,所以(2)22p(2),即p2+4p120,p0,解得p2,所以拋物線的方程為:y24x;(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),則y124x1,y224x2,直

15、線MN的斜率kMN,則直線MN的方程為:yy0(x),即y,同理可得直線ML的方程整理可得y,將A(3,2),B(3,6)分別代入,的方程可得,消y0可得y1y212,易知直線kNL,則直線NL的方程為:yy1(x),即yx,故yx,所以y(x+3),因此直線NL恒過定點(diǎn)(3,0)【點(diǎn)睛】本題主要考查了拋物線的方程及直線與拋物線的位置關(guān)系,直線過定點(diǎn)問題,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.18()單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;().【解析】()對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可;()對(duì)函數(shù)進(jìn)行求導(dǎo),由題意知,為增函數(shù)等價(jià)于在區(qū)間恒成立,利用分離參數(shù)法和基本不等式

16、求最值即可求出實(shí)數(shù)的取值范圍.【詳解】()由題意知,函數(shù)的定義域?yàn)?,?dāng)時(shí),令,得,或,所以,隨的變化情況如下表:遞增遞減遞增的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.()由題意得在區(qū)間恒成立,即在區(qū)間恒成立.,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.所以,所以的取值范圍是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、利用分離參數(shù)法和基本不等式求最值求參數(shù)的取值范圍;考查運(yùn)算求解能力和邏輯推理能力;利用導(dǎo)數(shù)把函數(shù)單調(diào)性問題轉(zhuǎn)化為不等式恒成立問題是求解本題的關(guān)鍵;屬于中檔題、常考題型.19(1)證明見解析(2)證明見解析【解析】(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉(zhuǎn)化為,再作差提取公因式論證.(2)由

17、基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故.(2)由基本不等式得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.將上面四式相加,可得,即.【點(diǎn)睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.20(1)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+)(2)【解析】(1)化簡函數(shù)h(x),求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出(2)函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,則f(x)lnxmx0有兩個(gè)正根,由此得到m(x2x1)lnx2lnx1,m(x2+x1)lnx2+lnx1,消參數(shù)m化簡整

18、理可得ln(x1x2)ln,設(shè)t,構(gòu)造函數(shù)g(t)()lnt,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值即可求出x1x2的最大值【詳解】(1)令m2,函數(shù)h(x),h(x),令h(x)0,解得xe,當(dāng)x(0,e)時(shí),h(x)0,當(dāng)x(e,+)時(shí),h(x)0,函數(shù)h(x)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+)(2)f(x)u(x)v(x)xlnxx+1,f(x)1+lnxmx1lnxmx,函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,f(x)lnxmx0有兩個(gè)不等正根,lnx1mx10,lnx2mx20,兩式相減可得lnx2lnx1m(x2x1),兩式相加可得m(x2+x1)lnx2+lnx

19、1,ln(x1x2)ln,設(shè)t,1e,1te,設(shè)g(t)()lnt,g(t),令(t)t212tlnt,(t)2t2(1+lnt)2(t1lnt),再令p(t)t1lnt,p(t)10恒成立,p(t)在(1,e單調(diào)遞增,(t)p(t)p(1)11ln10,(t)在(1,e單調(diào)遞增,g(t)(t)(1)112ln10,g(t)在(1,e單調(diào)遞增,g(t)maxg(e),ln(x1x2),x1x2故x1x2的最大值為【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的最值和最值,考查了函數(shù)與方程的思想,轉(zhuǎn)化與化歸思想,屬于難題21(1)證明見解析;(2).【解析】(1)證明后可得平面,從而得,結(jié)合已知得線面垂直;(2)以為坐標(biāo)原點(diǎn),以為軸,為軸,為建立空間直角坐標(biāo)系,設(shè),寫出各點(diǎn)坐標(biāo),求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值【詳解】(1)證明:因?yàn)?,為中點(diǎn),所以,又,所以平面,又平面,所以,又,所以平面.(2)由已知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論